RT_Thread内核源码分析(二)——链表和对象管理

embedded/2024/9/24 22:24:27/

        实时操作系统基本上都是通过一些链表进行线程、信号、队列的管理,RT_Thread也不例外,本章主要讲解RT_Thread链表结构和对象管理。

本章基于RT_Thread Nano V3.1.5版本分析

      

1、链表

          RT_Thread使用的链表非常简单,链表节点只有节点指针,各节点在实例结构体中定义,可以通过头节点定位链表,可以通过节点在结构体中的偏移定位实例结构体。

1.1 双向链表

1.1.1 链表结构

        双向链表结构声明如下

struct rt_list_node
{struct rt_list_node *next;                          /**< 指向下一个节点. */struct rt_list_node *prev;                          /**< 指向上一个节点. */
};

        双向链表通过一个头节点对整个链表管理,如下所示,NODE1为头节点,用于定位链表,NODE2~NODEn为被链表管理的节点。

        双向链表主要用于对象、线程、定时器等实例管理,这些管理均需要提前设置头节点,如下所示,为系统内核定义的双链表头节点,还有一些头节点在结构体中定义,此处不再详述。

/********线程全局变量********/
extern rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX]; // 就绪线程链表数组
extern rt_list_t rt_thread_defunct;                                // 失效线程链表
/* 软件定时器链表 soft timer list */
static rt_list_t rt_soft_timer_list[RT_TIMER_SKIP_LIST_LEVEL];
/* 硬件定时器 hard timer list */
static rt_list_t rt_timer_list[RT_TIMER_SKIP_LIST_LEVEL];

1.1.2 链表操作

        链表操作采用内联函数和宏定义的方式,可以免去操作时的环境存储与恢复,提高运行效率。操作接口主要有初始化、插入节点(表头或表尾)、删除节点。

初始化

/*节点初始化(节点指针均指向自己)*/
#define RT_LIST_OBJECT_INIT(object) { &(object), &(object) }/*链表头节点初始化(节点指针均指向自己)*/
rt_inline void rt_list_init(rt_list_t *l)
{l->next = l->prev = l;
}

插入节点至表头

/*节点n插入到链表l的头部*/
rt_inline void rt_list_insert_after(rt_list_t *l, rt_list_t *n)
{l->next->prev = n;n->next = l->next;l->next = n;n->prev = l;
}

  NODE1为头节点,用于定位链表,NODE2~NODEn为链表管理的节点,NewNode为新插入的节点。

   插入节点至表尾

/*节点n插入到链表l的尾部*/
rt_inline void rt_list_insert_before(rt_list_t *l, rt_list_t *n)
{l->prev->next = n;n->prev = l->prev;l->prev = n;n->next = l;
}

         NODE1为头节点,用于定位链表,NODE2~NODEn为链表管理的节点,NewNode为新插入的节点。

删除节点

/*链表移除节点n*/ 
rt_inline void rt_list_remove(rt_list_t *n)
{n->next->prev = n->prev;n->prev->next = n->next;n->next = n->prev = n;
}

         NODE1为头节点,用于定位链表,DeleteNode、NODE2~NODEn为链表管理的节点,该图为删除节点DeleteNode。

1.1.3 链表遍历

        链表遍历接口采用内联函数和宏定义的方式,可以免去操作时的环境存储与恢复,提高运行效率。

        链表节点多数存储在各类对象的结构体中,当遍历到一个节点时,可通过节点在结构体中的偏移获取结构体指针。所以链表本质上是对对象(结构体)的管理,因此,链表遍历不仅可以遍历节点,还可以遍历对象(结构体)。

/****判断链表条目数为空****/ 
rt_inline int rt_list_isempty(const rt_list_t *l)
{return l->next == l;
}
/****获取链表长度****/
rt_inline unsigned int rt_list_len(const rt_list_t *l)
{unsigned int len = 0;const rt_list_t *p = l;while (p->next != l){p = p->next;len ++;}return len;
}
/****遍历链表节点(pos为遍历出的节点,head为头节点)*/
#define rt_list_for_each(pos, head)       \  
for(pos=(head)->next;pos!= (head);pos = pos->next)/*****遍历链表节点(安全模式,防止误删除,pos为遍历出的节点,n指向pos下个节点,head为头节点) */
#define rt_list_for_each_safe(pos, n, head) \
for(pos=(head)->next,n=pos->next; pos!=(head); pos=n, n=pos->next)/****定位对象(根据节点定位)***/
#define rt_container_of(ptr,type,member) ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
/****获取元素*/
#define rt_list_entry(node, type, member) rt_container_of(node, type, member)/*****遍历对象*/
#define rt_list_for_each_entry(pos, head, member) \
for(pos=rt_list_entry((head)->next,typeof(*pos),member);&pos->member!=(head);pos = rt_list_entry(pos->member.next, typeof(*pos), member)/******遍历对象(安全模式,防止误删除)  */
#define rt_list_for_each_entry_safe(pos, n, head, member) \for (pos = rt_list_entry((head)->next, typeof(*pos), member), \n = rt_list_entry(pos->member.next, typeof(*pos), member); \&pos->member != (head); \pos = n, n = rt_list_entry(n->member.next, typeof(*n), member))/*****获取链表第一个对象*/
#define rt_list_first_entry(ptr, type, member)  rt_list_entry((ptr)->next, type, member)

举例,比如遍历定时器,定时器结构体和链表如下所示:

/* 软件定时器链表 */
static rt_list_t rt_soft_timer_list;
/* 定时器结构体 */
struct rt_timer
{struct rt_object parent;                        /**< 基类对象*/rt_list_t   row;                                /**< 定时器链表节点*/void (*timeout_func)(void *parameter);          /**< 定时器函数指针 */void *parameter;                                /**< 定时器函数参数*/rt_tick_t        init_tick;                     /**< 定时器定时时间*/rt_tick_t        timeout_tick;                  /**< 定时器定时时刻*/
};
typedef struct rt_timer *rt_timer_t;
/*临时定时器*/
rt_timer_t  timerTemp;

         定时器链表节点在定时器结构体上的内存偏移为((struct rt_timer*)(0x0)->row),假设节点n为某个定时器的链表节点,获取定时器指针方法如下:

// 直接计算
struct rt_timer* pTimer=&n-((struct rt_timer*)(0x0)->row);
// 使用系统接口
struct rt_timer* pTimer=rt_container_of(&n,struct rt_timer*,row);

        假设定时器timerTemp已经插入到了链表rt_soft_timer_list中,在链表rt_soft_timer_list中定位到timerTemp的方法如下

/*在链表中定位定时器链表节点timerTemp.row*/ 
rt_list_for_each(&timerTemp->row, rt_soft_timer_list, row) /*在链表中定位定时器timerTemp*/
rt_list_for_each_entry(&timerTemp, rt_soft_timer_list, row) 

        由上述代码可见,rt_list_for_each与rt_list_for_each_entry接口作用相同,rt_list_for_each无疑性能更优,所以内核代码中并未使用rt_list_for_each_entry,而rt_list_for_each主要用于计算节点个数或判断节点是否连接在链表

1.2 单向链表

        单向链表主要在内存池管理中使用,本章只罗列单向链表接口,其详细使用过程可以参考双向链表,二者接口相似。

1.2.1 链表结构 

struct rt_slist_node
{struct rt_slist_node *next;                         /**< 指向下一个节点*/
};

  1.2.2 链表操作

/*****对象节点初始化(初始化被管理的节点)*****/
#define RT_SLIST_OBJECT_INIT(object) { RT_NULL }/****链表头节点初始化***/
rt_inline void rt_slist_init(rt_slist_t *l)
{l->next = RT_NULL;
}/*****节点n插入到链表l的尾部*****/
rt_inline void rt_slist_append(rt_slist_t *l, rt_slist_t *n)
{struct rt_slist_node *node;node = l;while (node->next) node = node->next;node->next = n;n->next = RT_NULL;
}/*****节点n插入到链表l的头部*****/
rt_inline void rt_slist_insert(rt_slist_t *l, rt_slist_t *n)
{n->next = l->next;l->next = n;
}/*****从链表l移除节点n*****/
rt_inline rt_slist_t *rt_slist_remove(rt_slist_t *l, rt_slist_t *n)
{struct rt_slist_node *node = l;while (node->next && node->next != n) node = node->next;if (node->next != (rt_slist_t *)0) node->next = node->next->next;return l;
}

  1.2.3 链表遍历

 /********定位元素member所在的结构体指针,结构体类型为type**********/
#define rt_container_of(ptr, type, member)   ((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->member)))/******链表节点个数******/
rt_inline unsigned int rt_slist_len(const rt_slist_t *l)
{unsigned int len = 0;const rt_slist_t *list = l->next;while (list != RT_NULL){list = list->next;len ++;}return len;
}
/*******单链表第一个节点*******/
rt_inline rt_slist_t *rt_slist_first(rt_slist_t *l)
{return l->next;
}
/*******单链表最后一个节点*******/
rt_inline rt_slist_t *rt_slist_tail(rt_slist_t *l)
{while (l->next) l = l->next;return l;
}
/*******节点n的下一个节点*******/
rt_inline rt_slist_t *rt_slist_next(rt_slist_t *n)
{return n->next;
}
/*******单链表为空*******/
rt_inline int rt_slist_isempty(rt_slist_t *l)
{return l->next == RT_NULL;
}/********获取节点所在的结构体*******/
#define rt_slist_entry(node, type, member)  rt_container_of(node, type, member)/********遍历链表的节点********/
#define rt_slist_for_each(pos, head) for(pos=(head)->next; pos!=RT_NULL; pos=pos->next)/*********遍历链表节点对应的结构体****/
#define rt_slist_for_each_entry(pos, head, member) \for(pos=rt_slist_entry((head)->next,typeof(*pos),member); &pos->member!=(RT_NULL); \pos=rt_slist_entry(pos->member.next,typeof(*pos),member))/**********获取链表第一个节点对应的结构体 *********/
#define rt_slist_first_entry(ptr, type, member) rt_slist_entry((ptr)->next, type, member)/**********获取链表最后一个节点对应的结构体*********/
#define rt_slist_tail_entry(ptr,type,member) rt_slist_entry(rt_slist_tail(ptr),type,member)

2、对象

       RT_Thread操作系统为方便统一管理,采用的面相对象的思想,系统定义了内核对象(等同于C++中的基类),线程、信号、消息、内存池等继承内核对象(线程、信号、消息等同于派生类)。

2.1 内核对象结构

        内核对象节点list用于链表管理,flag参数在不同对象中起着不同的含义,比如在定时器对象中表示定时器状态和定时器类型。type参数表示对象类型,见【2.2内核对象分类】

 /*基类  内核对象*/
struct rt_object
{char       name[RT_NAME_MAX];                       /**< 内核对象名称 */rt_uint8_t type;                                    /**< 内核对象类型 */rt_uint8_t flag;                                    /**< 内核对象标志  */rt_list_t  list;                                    /**< 内核对象链表节点  */
};

 2.2 内核对象分类

        内核结构中type元素表示对象类型,对象类型如下所示,其中【静态对象掩码】并不是一类独立对象,而是表示对象的属性,即对象是静态对象(静态存储)还是动态对象(申请动态内存存储)。例如:静态内存创建的线程,其类型为RT_Object_Class_Thread+RT_Object_Class_Static=0x81

 /*对象类型枚举*/
enum rt_object_class_type
{RT_Object_Class_Null          = 0x00,       /**< 未使用. */RT_Object_Class_Thread        = 0x01,       /**< 线程对象. */RT_Object_Class_Semaphore     = 0x02,       /**< 信号对象. */RT_Object_Class_Mutex         = 0x03,       /**< 互斥对象. */RT_Object_Class_Event         = 0x04,       /**< 事件对象. */RT_Object_Class_MailBox       = 0x05,       /**< 邮件对象 */RT_Object_Class_MessageQueue  = 0x06,       /**< 消息对象. */RT_Object_Class_MemHeap       = 0x07,       /**< 内存堆对象. */RT_Object_Class_MemPool       = 0x08,       /**< 内存池对象. */RT_Object_Class_Device        = 0x09,       /**< 设备驱动对象. */RT_Object_Class_Timer         = 0x0a,       /**< 定时器对象. */RT_Object_Class_Unknown       = 0x0c,       /**< 未知对象. */RT_Object_Class_Static        = 0x80        /**< 静态对象掩码. */
};

2.3 内核对象容器

        内核对象容器,主要通过双向链表管理对象,其结构体中的链表节点即为链表头节点。

        对象容器结构体

struct rt_object_information
{enum rt_object_class_type type;                     /**< 对象类型 */rt_list_t                 object_list;              /**< 对象链表 */rt_size_t                 object_size;              /**< 对象大小 */
};

        对象容器定义

        通过定义可见,对象容器是一数组,可根据宏定义自动裁剪。

 /*对象容器枚举*/
enum rt_object_info_type
{RT_Object_Info_Thread = 0,                         /**< 线程对象. */
#ifdef RT_USING_SEMAPHORERT_Object_Info_Semaphore,                          /**< 信号对象. */
#endif
#ifdef RT_USING_MUTEXRT_Object_Info_Mutex,                              /**< 互斥对象. */
#endif
#ifdef RT_USING_EVENTRT_Object_Info_Event,                              /**< 事件对象 */
#endif
#ifdef RT_USING_MAILBOXRT_Object_Info_MailBox,                            /**< 邮件对象 */
#endif
#ifdef RT_USING_MESSAGEQUEUERT_Object_Info_MessageQueue,                       /**< 消息对象. */
#endif
#ifdef RT_USING_MEMHEAPRT_Object_Info_MemHeap,                            /**< 堆对象*/
#endif
#ifdef RT_USING_MEMPOOLRT_Object_Info_MemPool,                            /**< 内存池对象. */
#endif
#ifdef RT_USING_DEVICERT_Object_Info_Device,                             /**< 驱动对象 */
#endifRT_Object_Info_Timer,                              /**< 定时器对象 */RT_Object_Info_Unknown,                            /**< 未知对象. */
};// 对象监视器初始化(指针指向自己)
#define _OBJ_CONTAINER_LIST_INIT(c) \
{&(rt_object_container[c].object_list),&(rt_object_container[c].object_list)}// 对象容器
static struct rt_object_information rt_object_container[RT_Object_Info_Unknown] =
{/* 初始化对象容器(线程) */{RT_Object_Class_Thread, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Thread), sizeof(struct rt_thread)},#ifdef RT_USING_SEMAPHORE/* 初始化对象容器(信号) */{RT_Object_Class_Semaphore, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Semaphore), sizeof(struct rt_semaphore)},#endif#ifdef RT_USING_MUTEX/* 初始化对象容器(互斥信号) */{RT_Object_Class_Mutex, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Mutex), sizeof(struct rt_mutex)},
#endif
#ifdef RT_USING_EVENT/* 初始化对象容器(事件) */{RT_Object_Class_Event, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Event), sizeof(struct rt_event)},
#endif
#ifdef RT_USING_MAILBOX/* 初始化对象容器(邮件)  */{RT_Object_Class_MailBox, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_MailBox), sizeof(struct rt_mailbox)},
#endif#ifdef RT_USING_MESSAGEQUEUE/* 初始化对象容器(队列)  */{RT_Object_Class_MessageQueue, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_MessageQueue), sizeof(struct rt_messagequeue)},
#endif#ifdef RT_USING_MEMHEAP/* 初始化对象容器(内存堆) */{RT_Object_Class_MemHeap, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_MemHeap), sizeof(struct rt_memheap)},
#endif#ifdef RT_USING_MEMPOOL/* 初始化对象容器(内存池) */{RT_Object_Class_MemPool, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_MemPool), sizeof(struct rt_mempool)},
#endif#ifdef RT_USING_DEVICE/* 初始化对象容器(驱动) */{RT_Object_Class_Device, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Device), sizeof(struct rt_device)},
#endif/* 初始化对象容器(定时器) */{RT_Object_Class_Timer, _OBJ_CONTAINER_LIST_INIT(RT_Object_Info_Timer), sizeof(struct rt_timer)},
};

对象容器管理图示,容器有2个线程对象。

2.4 内核对象继承 

        线程、信号、互斥等对象的结构体,第一个成员必须是内核对象,等同于C++的public继承;如下例所示:

        

2.5 内核对象操作

/*系统对象(静态对象)初始化*/
void rt_system_object_init(void){}/*获取对象所在的容器(依据类型枚举)*/
struct rt_object_information *rt_object_get_information(enum rt_object_class_type type)
{int index;for (index = 0; index < RT_Object_Info_Unknown; index ++)if (rt_object_container[index].type == type) return &rt_object_container[index];return RT_NULL;
}/*获取对象所在链表长度,既同类对象个数 (依据类型枚举)*/
int rt_object_get_length(enum rt_object_class_type type)
{int count = 0;rt_ubase_t level;struct rt_list_node *node = RT_NULL;struct rt_object_information *information = RT_NULL;information = rt_object_get_information((enum rt_object_class_type)type);if (information == RT_NULL) return 0;// 进入临界区level = rt_hw_interrupt_disable();/*计算有效对象个数*/rt_list_for_each(node, &(information->object_list)){count ++;}// 退出临界区rt_hw_interrupt_enable(level);return count;
}/* 复制type类型的对象指针至pointers中,最大maxlen个*/
int rt_object_get_pointers(enum rt_object_class_type type, rt_object_t *pointers, int maxlen)
{int index = 0;rt_ubase_t level;struct rt_object *object;struct rt_list_node *node = RT_NULL;struct rt_object_information *information = RT_NULL;if (maxlen <= 0) return 0;// 获取对应容器information = rt_object_get_information((enum rt_object_class_type)type);if (information == RT_NULL) return 0;// 进入临界区level = rt_hw_interrupt_disable();/* 检索节点,并复制对象指针*/rt_list_for_each(node, &(information->object_list)){   /*根据节点获取对象指针*/object = rt_list_entry(node, struct rt_object, list);pointers[index] = object;index ++;if (index >= maxlen) break;}// 退出临界区rt_hw_interrupt_enable(level);return index;
}/*初始化静态内核对象 */
void rt_object_init(struct rt_object         *object,enum rt_object_class_type type,const char               *name)
{register rt_base_t temp;struct rt_list_node *node = RT_NULL;struct rt_object_information *information;/*获取对象容器*/information = rt_object_get_information(type);RT_ASSERT(information != RT_NULL);/* 退出线程调度*/rt_enter_critical();/* 检查对象,避免重复初始化*/
for(node=information->object_list.next;node!=&(information->object_list);node=node->next){struct rt_object *obj;obj = rt_list_entry(node, struct rt_object, list);if (obj){/*检查是否存在重复初始化*/RT_ASSERT(obj != object);}}/* 恢复线程调度*/rt_exit_critical();/* 设置静态标识*/object->type = type | RT_Object_Class_Static;/* 设置名称 */rt_strncpy(object->name, name, RT_NAME_MAX);/* 对象新增函数调用钩子*/RT_OBJECT_HOOK_CALL(rt_object_attach_hook, (object));/* 进入临界区lock interrupt */temp = rt_hw_interrupt_disable();/*对象插入值链表头部*/rt_list_insert_after(&(information->object_list), &(object->list));/* 退出临界区*/rt_hw_interrupt_enable(temp);
}/*移除静态内核对象*/
void rt_object_detach(rt_object_t object)
{register rt_base_t temp;/* 断言*/RT_ASSERT(object != RT_NULL);/* 执行对象移除钩子 */RT_OBJECT_HOOK_CALL(rt_object_detach_hook, (object));/*清除对象类型*/object->type = 0;/* 进入临界区*/temp = rt_hw_interrupt_disable();/* 从链表 移除对象*/rt_list_remove(&(object->list));/* 退出临界区 */rt_hw_interrupt_enable(temp);
}/*初始化动态内核对象(依据类型分配)*/
rt_object_t rt_object_allocate(enum rt_object_class_type type, const char *name)
{struct rt_object *object;register rt_base_t temp;struct rt_object_information *information;/*中断断言*/RT_DEBUG_NOT_IN_INTERRUPT;/* 获取对象容器*/information = rt_object_get_information(type);//断言RT_ASSERT(information != RT_NULL);/*动态内存申请*/object = (struct rt_object *)RT_KERNEL_MALLOC(information->object_size);if (object == RT_NULL){/*动态内存申请失败*/return RT_NULL;}/* 动态内存初始化为0*/rt_memset(object, 0x0, information->object_size);/* 设置对象类型 */object->type = type;/* 清除对象标志 */object->flag = 0;/* 设置名称 */rt_strncpy(object->name, name, RT_NAME_MAX);/* 执行钩子 */RT_OBJECT_HOOK_CALL(rt_object_attach_hook, (object));/* 进入临界区*/temp = rt_hw_interrupt_disable();/* 插入对象至管理器链表头部*/rt_list_insert_after(&(information->object_list), &(object->list));/* 退出临界区*/rt_hw_interrupt_enable(temp);/* 返回对象指针*/return object;
}/**删除并释放动态对象*/
void rt_object_delete(rt_object_t object)
{register rt_base_t temp;/* 断言 */RT_ASSERT(object != RT_NULL);RT_ASSERT(!(object->type & RT_Object_Class_Static));RT_OBJECT_HOOK_CALL(rt_object_detach_hook, (object));/* 清除类型 */object->type = RT_Object_Class_Null;/* 进入临界区 */temp = rt_hw_interrupt_disable();/* 从链表移除*/rt_list_remove(&(object->list));/* 退出临界区*/rt_hw_interrupt_enable(temp);/* 释放对象内存 */RT_KERNEL_FREE(object);
}
#endif/**检查对象类型是否为系统类型(静态类型)*/
rt_bool_t rt_object_is_systemobject(rt_object_t object)
{/* 对象断言*/RT_ASSERT(object != RT_NULL);if (object->type & RT_Object_Class_Static)return RT_TRUE;return RT_FALSE;
}/**获取对象类型*/
rt_uint8_t rt_object_get_type(rt_object_t object)
{/*断言*/RT_ASSERT(object != RT_NULL);return object->type & ~RT_Object_Class_Static;
}/*查找对象(name对象名称,type对象类型,依据对象名称和类型,该函数不能在中断调用)*/
rt_object_t rt_object_find(const char *name, rt_uint8_t type)
{struct rt_object *object = RT_NULL;struct rt_list_node *node = RT_NULL;struct rt_object_information *information = RT_NULL;/*获取对象容器*/information = rt_object_get_information((enum rt_object_class_type)type);/* 参数检查 */if ((name == RT_NULL) || (information == RT_NULL)) return RT_NULL;/* which is invoke in interrupt status */RT_DEBUG_NOT_IN_INTERRUPT;/* 退出线程调度*/rt_enter_critical();/* 遍历对象节点 */rt_list_for_each(node, &(information->object_list)){/*获取对象*/object = rt_list_entry(node, struct rt_object, list);/*判断对象*/if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0){/* 恢复线程调度*/rt_exit_critical();return object;}}/* 恢复线程调度 */rt_exit_critical();return RT_NULL;
}

2.6 内核对象钩子

        操作系统通过钩子(函数指针)给用户侧提供调试、监视或其他用途的接口,这些接口分布在对象操作的重要位置,用户侧可以根据需求选配使用。

/*****对象钩子*****/
static void (*rt_object_attach_hook)(struct rt_object *object); // 对象增加调用钩子
static void (*rt_object_detach_hook)(struct rt_object *object); // 对象移除调用钩子
void (*rt_object_trytake_hook)(struct rt_object *object);       // 对象将被占用调用钩子
void (*rt_object_take_hook)(struct rt_object *object);          // 对象已经被占用调用钩子
void (*rt_object_put_hook)(struct rt_object *object);           // 对象被释放调用钩子/*****对象动态增加调用钩子设置*****/
void rt_object_attach_sethook(void (*hook)(struct rt_object *object))
{rt_object_attach_hook = hook;
}/*****对象移除调用钩子设置*****/
void rt_object_detach_sethook(void (*hook)(struct rt_object *object))
{rt_object_detach_hook = hook;
}/*****对象将要占用调用钩子设置,主要应用于信号、互斥信号、事件、邮件、消息队列将要阻塞线程时*****/
void rt_object_trytake_sethook(void (*hook)(struct rt_object *object))
{rt_object_trytake_hook = hook;
}/*****对象已经占用调用钩子设置,主要应用于信号、互斥信号、事件、邮件、消息队列、定时器返回线程,检测阻塞***/
void rt_object_take_sethook(void (*hook)(struct rt_object *object))
{rt_object_take_hook = hook;
}
/****对象释放调用钩子设置,比如消息对象发送消息,释放线程****/
void rt_object_put_sethook(void (*hook)(struct rt_object *object))
{rt_object_put_hook = hook;
}


http://www.ppmy.cn/embedded/116295.html

相关文章

【论文速看】DL最新进展20240924-增量语义分割、多任务分割检测、遥感目标检测

目录 【增量语义分割】【多任务】【人脸防伪】【遥感目标检测】 【增量语义分割】 AWF: Adaptive Weight Fusion for Enhanced Class Incremental Semantic Segmentation 论文链接&#xff1a;https://arxiv.org/pdf/2409.08516 代码链接&#xff1a;[无&#xff0c;但文中说会…

MYSQL基础篇

文章目录 一、函数二、约束三、多表查询四、事务总结 一、函数 substring索引值从1开始 datadiff是前一个日期减去后面一个日期 二、约束 check&#xff08;&#xff09;括号里填条件 default后面加默认值eg&#xff1a;‘1’ 三、多表查询 给表起别名就不能直接通过表面来限定…

JVM 类加载机制

什么是类加载&#xff1f; 在JVA虚拟机实现规范中&#xff0c;通过ClassLoader类加载器把*.class字节码文件&#xff08;文件流&#xff09;加载到内存&#xff0c;并对字节码文件内容进行验证、准备、解析和初始化&#xff0c;最终形成可以被虚拟机直接使用的java.lang.Class对…

ER论文阅读-Incomplete Multimodality-Diffused Emotion Recognition

基本介绍&#xff1a;NeurIPS, 2024, CCF-A 原文链接&#xff1a;https://proceedings.neurips.cc/paper_files/paper/2023/file/372cb7805eaccb2b7eed641271a30eec-Paper-Conference.pdf Abstract 人类多模态情感识别&#xff08;MER&#xff09;旨在通过多种异质模态&#x…

【工具类】——图片缩放

在java中对于图片的处理一般都是使用Graphics2D类来实现。 Graphics2D 是 Java 2D API 的核心类&#xff0c;用于在 Java 平台上渲染二维形状、文本和图像。它是 Graphics 类的扩展&#xff0c;提供了更复杂的图形操作功能&#xff0c;包括几何变换、颜色管理、文本布局等。 用…

DAY20信息打点-红蓝队自动化项目资产侦察武器库部署企查产权网络空间

2.自动化-网络空间-AsamF 1.去GitHub上下载项目之后使用CMD打开 2.输入命令AsamF_windows_amd64.exe -v生成配置文件 3.AsamF会在~/.config/asamf/目录下生成config.json文件 C:\Users\Acer\.config\asamf 5.根据文档输入命令去查询所需信息&#xff08;已经没有用了&#x…

【LLM学习之路】9月23日24日 第十、十一天 Attention代码解读

【LLM学习之路】9月23日24日 第十、十一天 Attention代码解读 Transformer模型大致分为三类 纯 Encoder 模型&#xff08;例如 BERT&#xff09;&#xff0c;又称自编码 (auto-encoding) Transformer 模型&#xff1b;纯 Decoder 模型&#xff08;例如 GPT&#xff09;&#…

免费与付费代理IP工具的优缺点分析

面对市场上众多的代理IP工具&#xff0c;选择合适的工具成为一项挑战。本文将深入分析免费与付费代理IP工具的优缺点&#xff0c;协助您做出明智的选择。 一、免费代理IP工具的优缺点 优点&#xff1a; 零成本&#xff1a;最大的优点在于无需任何费用。对于预算有限的用户&a…