踏上R语言之旅:解锁数据世界的神秘密码(一)

embedded/2024/11/13 9:34:10/

R语言学习


文章目录

  • R语言学习
  • 数据矩阵与R语言表示
    • 1.创建一个向量(随机变量、一维数组)
    • 2.创建一个矩阵(二维数组)
    • 3.矩阵转置
    • 4.矩阵相加减
    • 5.矩阵相乘
    • 6.矩阵对角元素相关运算
    • 7.矩阵求逆
    • 8.矩阵的特征值与特征向量
    • 9.矩阵的Choleskey分解
    • 10.矩阵奇异值分解
    • 11.矩阵QR分解
    • 12.矩阵kronecker积
    • 13.矩阵的维数
    • 14.矩阵的行和、列和、行平均与列平均
  • 总结


数据矩阵与R语言表示

1.创建一个向量(随机变量、一维数组)

在R中可以用函数c()来创建一个向量,例如

>x1=c(171,175,159,155,152,158,154,164,168,166,159,164)
> x2=c(57,64,41,38,35,44,41,51,57,49,47,46)

这里,x1,x2分别为行向量,也可以认为是1行12列的矩阵。
函数length()可以返回向量的长度,mode()可以返回向量的数据类型,例如:

> length(x1)
[1] 12
> mode(x1)
[1] "numeric"

2.创建一个矩阵(二维数组)

(1)合并命令。可以用rbind()cbind()将两个以上的向量或矩阵合并起来,

rbind()表示按行合并,cbind()则表示按列合并。

> rbind(x1,x2)[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
x1  171  175  159  155  152  158  154  164  168   166   159   164
x2   57   64   41   38   35   44   41   51   57    49    47    46
> cbind(x1,x2)x1 x2[1,] 171 57[2,] 175 64[3,] 159 41[4,] 155 38[5,] 152 35[6,] 158 44[7,] 154 41[8,] 164 51[9,] 168 57
[10,] 166 49
[11,] 159 47
[12,] 164 46

(2)生成矩阵。在R中可以用函数matrix()来创建一个矩阵,引用该函数时需要输入必要的参数值。

> matrix(data=NA,nrow=1,ncol=1,byrow=FALSE,dimnames=NULL)[,1]
[1,]   NA

data项为必要的矩阵元素,nrow为行数,ncol为列数,注意nrow与ncol的乘积应为矩阵元素个数,byrow项控制排列元素时是否按行进行,dimnames给定行和列的名称,例如:

 matrix(x1,nrow=3,ncol=4)[,1] [,2] [,3] [,4]
[1,]  171  155  154  166
[2,]  175  152  164  159
[3,]  159  158  168  164
 matrix(x1,nrow=4,ncol=3)[,1] [,2] [,3]
[1,]  171  152  168
[2,]  175  158  166
[3,]  159  154  159
[4,]  155  164  164
 matrix(x1,nrow=4,ncol=3,byrow=T)[,1] [,2] [,3]
[1,]  171  175  159
[2,]  155  152  158
[3,]  154  164  168
[4,]  166  159  164

3.矩阵转置

A为mxn矩阵,A’为其转置矩阵,求A’在R中可用函数t(),例如:

> A=matrix(1:12,nrow=3,ncol=4)
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> t(A)[,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

4.矩阵相加减

在R中对同行同列矩阵相加减,可用符号“+”、“-”,例如:

> A=B=matrix(1:12,nrow=3,ncol=4)
> A+B[,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> A-B[,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0

5.矩阵相乘

A为mxn矩阵,B为nxk矩阵,在R中求AB可用符号“%*%",例如:

> A=matrix(1:12,nrow=3,ncol=4)
> B=matrix(1:12,nrow=4,ncol=3)
> A%*%B[,1] [,2] [,3]
[1,]   70  158  246
[2,]   80  184  288
[3,]   90  210  330

6.矩阵对角元素相关运算

若要取一个方阵的对角元素,对一个向量应用diag()函数将产生以这个向量为对角元素的对角矩阵,对一个正整数k应用diag()函数将产生k维单位矩阵,例如:

> A=matrix(1:16,nrow=4,ncol=4)
> diag(A)
[1]  1  6 11 16
> diag(diag(A))[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16
> diag(4)[,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1

7.矩阵求逆

矩阵求逆可用solve(),应用solve(A,b)运算结果可解线性方程组Ax=b,若b缺省,则系统默认为单位矩阵,由此可用其进行矩阵求逆,例如:

> A=matrix(rnorm(16),4,4);
> A[,1]       [,2]        [,3]       [,4]
[1,] -0.2930984 -1.7887997 -0.13792868  0.8021037
[2,] -1.3322062  0.3419297  1.18732716 -1.8372907
[3,]  1.0203442 -2.4283146  0.03727872 -2.4674615
[4,] -0.9507527  0.6046697 -0.79238198 -0.1241637
> solve(A)[,1]        [,2]       [,3]        [,4]
[1,] -0.35916036 -0.30123211  0.1268138 -0.38288995
[2,] -0.39760300 -0.02206908 -0.1143649  0.03076075
[3,]  0.08927873  0.35986115 -0.2013035 -0.74780287
[4,]  0.24412384 -0.09740967 -0.2433257 -0.19990320

8.矩阵的特征值与特征向量

矩阵A的谱分解为A=UΛU’,其中Λ是由A的特征值组成的对角矩阵,U的列为A的特征值对应的特征向量,在R中可以用函数eigen()得到U和Λ。

eigen(x,symmetric,only.values=FALSE,EISPACK=FALSE)

其中,x为矩阵,symmetric项指定矩阵x是否为对称矩阵,若不指定,系统将自动检测x是否为对称矩阵,例如:

> A=diag(4)+1;A;[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> A.e=eigen(A,symmetric=T)
> A.e
eigen() decomposition
$values
[1] 5 1 1 1$vectors[,1]       [,2]       [,3]       [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249> A.e$vector%*%diag(A.e$values)%*%t(A.e$vectors)[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

上面最后的语句作用是重构原始矩阵,其中 A.e$vector 是原始矩阵的特征向量,diag(A.e$values) 是一个以特征值为对角线元素的对角矩阵,t(A.e$vectors) 是特征向量的转置矩阵。

9.矩阵的Choleskey分解

对于正定矩阵A,可对其进行Choleskey分解,即A=P’P,其中,P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:

> A.c=chol(A)
> A.c[,1]      [,2]      [,3]      [,4]
[1,] 1.414214 0.7071068 0.7071068 0.7071068
[2,] 0.000000 1.2247449 0.4082483 0.4082483
[3,] 0.000000 0.0000000 1.1547005 0.2886751
[4,] 0.000000 0.0000000 0.0000000 1.1180340
> t(A.c)%*%A.c[,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2

10.矩阵奇异值分解

A为mxn矩阵,rank(A)=r,可以分解为A=UDV’,其中,U’U=V’V=I。在R中可以用函数svd()进行奇异值分解,例如:

> A=matrix(1:18,3,6);A;[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18
> A.s=svd(A)
> A.s
$d
[1] 4.589453e+01 1.640705e+00 1.366522e-15$u[,1]        [,2]       [,3]
[1,] -0.5290354  0.74394551  0.4082483
[2,] -0.5760715  0.03840487 -0.8164966
[3,] -0.6231077 -0.66713577  0.4082483$v[,1]        [,2]       [,3]
[1,] -0.07736219 -0.71960032 -0.4076688
[2,] -0.19033085 -0.50893247  0.5745647
[3,] -0.30329950 -0.29826463 -0.0280114
[4,] -0.41626816 -0.08759679  0.2226621
[5,] -0.52923682  0.12307105 -0.6212052
[6,] -0.64220548  0.33373889  0.2596585> A.s$u%*%diag(A.s$d)%*%t(A.s$v)[,1] [,2] [,3] [,4] [,5] [,6]
[1,]    1    4    7   10   13   16
[2,]    2    5    8   11   14   17
[3,]    3    6    9   12   15   18

11.矩阵QR分解

A为mxn矩阵时可以进行QR分解,A=QR,其中,Q’Q=I,在R中可以用函数qr()进行QR分解,例如:

> A=matrix(1:16,4,4)
> qr(A)
$qr[,1]        [,2]          [,3]          [,4]
[1,] -5.4772256 -12.7801930 -2.008316e+01 -2.738613e+01
[2,]  0.3651484  -3.2659863 -6.531973e+00 -9.797959e+00
[3,]  0.5477226  -0.3781696  1.601186e-15  2.217027e-15
[4,]  0.7302967  -0.9124744 -5.547002e-01 -1.478018e-15$rank
[1] 2$qraux
[1] 1.182574e+00 1.156135e+00 1.832050e+00 1.478018e-15$pivot
[1] 1 2 3 4attr(,"class")
[1] "qr"

12.矩阵kronecker积

nxm矩阵A与hxk矩阵B的kronecker积为一个nhxmk维矩阵,在R中,kronecker积可以用函数kronecker()来计算,例如:

> A=matrix(1:4,2,2)
> A[,1] [,2]
[1,]    1    3
[2,]    2    4
> B=matrix(rep(1,4),2,2);B;[,1] [,2]
[1,]    1    1
[2,]    1    1
> kronecker(A,B)[,1] [,2] [,3] [,4]
[1,]    1    1    3    3
[2,]    1    1    3    3
[3,]    2    2    4    4
[4,]    2    2    4    4

13.矩阵的维数

在R中很容易得到一个矩阵的维数,函数dim()将返回一个矩阵的维数,nrow()返回行数,ncol()返回列数,例如:

> A=matrix(1:12,3,4)
> dim(A)
[1] 3 4
> nrow(A)
[1] 3
> ncol(A)
[1] 4

14.矩阵的行和、列和、行平均与列平均

一个矩阵的和、平均数以及列的和、平均数,例如:
rowSums() rowMeans() colSums() colMeans()

> rowSums(A)
[1] 22 26 30
> rowMeans(A)
[1] 5.5 6.5 7.5
> colSums(A)
[1]  6 15 24 33
> colMeans(A)
[1]  2  5  8 11
> A[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

上述关于矩阵行和列的操作,还可以使用apply()函数实现:

apply(X,MARGIN,FUN,…)
其中,X为矩阵,MARGIN用来指定是对行运算还是对列运算,MARGIN=1表示对行运算,MARGIN=2表示对列运算,FUN用来指定运算函数,”…"用来给定FUN中需要的其他参数,例如:

> apply(A,1,sum)
[1] 22 26 30
> apply(A,1,mean)
[1] 5.5 6.5 7.5
> apply(A,2,sum)
[1]  6 15 24 33
> apply(A,2,mean)
[1]  2  5  8 11

apply()函数还可以对矩阵的行或列进行其他运算,例如计算每一列的方差:

> A=matrix(rnorm(10),2,5)
> apply(A,2,var)
[1] 0.06233338 1.72555863 0.45365134 0.83043694 0.37709323
> apply(A,2,function(x,a)x*a,a=2)[,1]      [,2]       [,3]       [,4]       [,5]
[1,] -2.437330 -1.090969 -1.5564223  1.9951652  0.3086047
[2,] -1.731167  2.624468  0.3486265 -0.5823327 -1.4282735

注:最后一式与A*2效果一致,旨在说明如何应用apply函数

总结

主要运用的是线性代数里面所涉及到的知识,不得不说,R语言所包含的函数着实比较丰富,所学知识取自王斌会老师的《多元统计分析及R语言建模》,上述内容均本人手敲,创作不易,收获不浅,继续加油!


http://www.ppmy.cn/embedded/11423.html

相关文章

Selenium(三):WebElement核心属性和方法

WebElement常用属性 1.id 标示 2.size 宽高 3.rect 宽高和坐标 4.tag_name 标签名称 5.text 文本内容 WebElement常用方法 1.send_keys() 输入内容 2.clear() 清空内容 3.click() 点击 4.get_attribute() 标签名称 5.is_selected() 是否被选中 5.is_enabled() 是否…

Postgresql float8类型精度丢失问题

问题描述 最近遇到了一个bug。用的是pg数据库。表里有一个index_value字段,表示指标的数值,是float8类型。表里存的是-0.11105,但是查出来变成了-0.111049999999。而且这个是不稳定的,有时候查出来又是-0.11105。 排查的过程中&…

Centos7.9下 systemd方式服务延迟启动的实现技巧(且适用于docker-pxc集群开机自启)

目标,让开机后 docker.service延迟启动 一.定义延迟启动脚本 #!/bin/bashsed -i s/safe_to_bootstrap: 0/safe_to_bootstrap: 9/g /var/lib/docker/volumes/d-compose_v301/_data/grastate.datsleep 10 # 等待10秒后启动Docker服务 systemctl start docker.service…

ROS学习笔记(13)坐标变换(TF和TF2)

0.前提 我翻了一下我以前的教程发现我居然没有讲过TF坐标转换,那现在补上。在机器人学中坐标转换是一个极为重要的概念、内容,在大量的科技公司招聘机器人岗位的人才时掌握机器人运动学正解和逆解等都是加分项。机器人在实际应用当中会涉及到大量的位置…

React-RTK

​🌈个人主页:前端青山 🔥系列专栏:React篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来React篇专栏内容:React-RTK 目录 1、介绍 2、安装 3、编写RTK使用示例 4、官方提供项目包示例 创建 Redux …

AlgorithmDay20

day20 [!NOTE] return用作:return递归的上一层,而不一定一定是最后结果。 654.最大二叉树 又是构造二叉树,昨天大家刚刚做完 中序后序确定二叉树,今天做这个 应该会容易一些, 先看视频,好好体会一下 为什么…

Swift中与WebView的交互

在Swift中,可以使用WKWebView来实现与WebView的交互。WKWebView是iOS 8及以后版本中新增的Web视图控件,它提供了一种现代化的方式来加载和显示Web内容,并且支持与JavaScript的交互。 以下是一些常见的与WebView的交互方式: 1.加…

React 19 带来了 JSX 运行时的重要更新

在 React 的发展历程中,JSX 运行时一直扮演着重要的角色。在以前的的版本,JSX 运行时会克隆传入的 props 对象,这背后有着两大原因。 历史原因 React 保留了一些特殊的 prop 名称,如 key 和在 React 19 之前的 ref。这些 prop 并…