Kafka-代码模板

embedded/2024/9/20 8:57:11/ 标签: kafka
  • 配置:server.properties
  • 绑定Kafka服务器
  • 生产者配置
  • 生产者发送消息
  • 消费配置
  • 消费者接收消息
  • 消费提交
  • springboot 集成
    • ack‐mode
    • 生产者 & 消费者
  • Kafka事务

配置:server.properties

  • 配置:server.properties
#broker.id属性在kafka集群中必须要是唯一
broker.id=0
#kafka部署的机器ip和提供服务的端口号
listeners=PLAINTEXT://192.168.65.60:9092
#kafka的消息存储文件
log.dir=/usr/local/data/kafka‐logs
#kafka连接zookeeper的地址
zookeeper.connect=192.168.65.60:2181

绑定Kafka服务器

  • 绑定Kafka服务器
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094");
// 生产者
Producer<String, String> producer = new KafkaProducer<String, String>(props);
// 消费者
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);

生产者配置

  • 生产者配置
/* * 发出消息持久化机制参数* acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息* acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入,就可以继续发送下一条消息*          如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失* acks=‐1或all: 需要等待 min.insync.replicas(默认为1,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志*                这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置*/
props.put(ProducerConfig.ACKS_CONFIG, "1");
// 发送失败重试次数,重试能保证消息发送的可靠性,但是也可能造成消息重复发送,需要接收者做好消息接收的幂等性处理
props.put(ProducerConfig.RETRIES_CONFIG, 3);
// 重试间隔设置,默认重试间隔100ms
props.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG, 300);
// 设置发送消息的本地缓冲区,如果设置了该缓冲区,消息会先发送到本地缓冲区,可以提高消息发送性能,默认值是33554432,即32MB
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
// kafka本地线程会从缓冲区取数据,批量发送到broker,设置批量发送消息的大小,默认值是16384,即16kb,就是说一个batch满了16kb就发送出去
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
/* * batch最大的延迟发送时间* 默认值是0:意思就是消息必须立即被发送,但这样会影响性能* 一般设置10毫秒左右,就是说这个消息发送完后会进入本地的一个batch,如果10毫秒内,这个batch满了16kb就会随batch一起被发送出去* 如果10毫秒内,batch没满,那么也必须把消息发送出去,不能让消息的发送延迟时间太长* *  消息 -> 本地缓冲区(32M)-> batch(16k)-> 发送(10ms batch不满也发送)*/
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
// 把发送的key和value从字符串序列化为字节数组
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());

生产者发送消息

  • 生产者发送消息:指定分区;不指定分区;同步;异步
// 指定发送分区
var producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, 0, key_json, value_json);
// 未指定发送分区,具体发送的分区计算公式:hash(key) % partitionNum
var producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, key_json, value_json);
// 等待消息发送成功的同步阻塞方法
RecordMetadata metadata = producer.send(producerRecord).get();
// 异步回调方式发送消息
producer.send(producerRecord, new Callback() {public void onCompletion(RecordMetadata metadata, Exception exception) {// 处理异常}
});
// 关闭
producer.close();

消费配置

  • 消费配置
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
/* * 当消费主题的是一个新的消费组,或者指定offset的消费方式,offset不存在,那么应该如何消费* latest(默认) :只消费自己启动之后发送到主题的消息* earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于 consumer.seekToBeginning(每次都从头开始消费)*/
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// consumer给broker发送心跳的间隔时间,broker接收到心跳如果此时有rebalance发生会通过心跳响应将rebalance方案下发给consumer,这个时间可以稍微短一点
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000);
// 服务端broker多久感知不到一个consumer心跳就认为他故障了,会将其踢出消费组,对应的Partition也会被重新分配给其他consumer,默认是10秒
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000);
// 一次poll最大拉取消息的条数,如果消费者处理速度很快,可以设置大点,如果处理速度一般,可以设置小点
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500);
// 如果两次poll操作间隔超过了这个时间,broker就会认为这个consumer处理能力太弱,会将其踢出消费组,将分区分配给别的consumer消费
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000);
// 把发送的key和value从字符串序列化为字节数组
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());

消费者接收消息

  • 消费者接收消息(topic):指定分区;回溯(从头,指定offset);拉取集合
// 订阅Topic
consumer.subscribe(Arrays.asList(TOPIC_NAME));
// 消费指定分区
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
// 回溯消费(从头消费 - seekToBeginning)
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
// 指定offset消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0)));
consumer.seek(new TopicPartition(TOPIC_NAME, 0), 10);
// 从指定时间点开始消费 - 1小时前
List<PartitionInfo> topicPartitions = consumer.partitionsFor(TOPIC_NAME);
long fetchDataTime = new Date().getTime()1000 * 60 * 60;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(topicName, par.partition()), fetchDataTime);
}
// 遍历 value.offset(); 获取offset,然后指定offset消费
Map<TopicPartition, OffsetAndTimestamp> parMap = consumer.offsetsForTimes(map);
// 拉取消息集合
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));

消费提交

  • 消费提交(offset):同步;异步
// 手动同步提交offset,当前线程会阻塞直到offset提交成功,一般使用同步提交,因为提交之后一般也没有什么逻辑代码了
consumer.commitSync();
// 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑
consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets, Exception ex) {// 处理异常}
});

springboot 集成

  • springboot配置application.yml
spring:kafka:bootstrap‐servers: 192.168.65.60:9092,192.168.65.60:9093,192.168.65.60:9094producer:retries: 3batch‐size: 16384buffer‐memory: 33554432acks: 1key‐serializer: org.apache.kafka.common.serialization.StringSerializervalue‐serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group‐id: default‐groupenable‐auto‐commit: falseauto‐offset‐reset: earliestkey‐deserializer: xxx.StringDeserializervalue‐deserializer: xxx.StringDeserializerlistener:ack‐mode: manual_immediate

ack‐mode

  • ack‐mode
    • RECORD:当每一条记录被消费者监听器(ListenerConsumer)处理之后提交
    • BATCH:当每一批poll()的数据被消费者监听器处理之后提交
    • TIME:当每一批poll()的数据被消费者监听器处理之后,距离上次提交时间大于TIME时提交
    • COUNT:当每一批poll()的数据被消费者监听器处理之后,被处理record数量大于等于COUNT时提交
    • TIME | COUNT:有一个条件满足时提交
    • MANUAL:当每一批poll()的数据被消费者监听器处理之后, 手动调用Acknowledgment.acknowledge()后提交
    • MANUAL_IMMEDIATE:手动调用Acknowledgment.acknowledge()后立即提交,一般使用这种(一次提交一条消息)

生产者 & 消费者

  • 生产者
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
kafkaTemplate.send(TOPIC_NAME, 0, "key", "this is a msg");
  • 消费者
@KafkaListener(topics = "my‐replicated‐topic",groupId = "zhugeGroup")
public void listenZhugeGroup(ConsumerRecord<String, String> record, Acknowledgment ack) {String value = record.value();ack.acknowledge();  //手动提交offset
}// 配置多个消费组(再写一个消费组处理同一个topic)
@KafkaListener(topics = "my‐replicated‐topic",groupId = "tulingGroup")// 配置多个topic,concurrency就是同组下的消费者个数,就是并发消费数,必须小于等于分区总数
@KafkaListener(groupId = "testGroup", topicPartitions = {@TopicPartition(topic = "topic1", partitions = {"0", "1"}),@TopicPartition(topic = "topic2", partitions = "0",partitionOffsets = @PartitionOffset(partition = "1", initialOffset = "100"))
},concurrency = "6")

Kafka事务

  • Kafka事务
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("transactional.id", "my‐transactional‐id");
Producer<String, String> producer = new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());// 初始化事务
producer.initTransactions();
try {// 开启事务producer.beginTransaction();// 发到不同的主题的不同分区producer.send(/*...*/);// 提交事务producer.commitTransaction();
} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {producer.close();
} catch (KafkaException e) {// 回滚事务producer.abortTransaction();
}
// 关闭
producer.close();

http://www.ppmy.cn/embedded/107177.html

相关文章

核心交换机的六个基础知识

首先你要明确一个概念&#xff0c;接入层交换机、汇聚层交换机、核心层交换机并非是交换机的种类或者属性&#xff0c;只是由其所执行的任务来划分的。 从网络拓扑结构来讲&#xff0c;一个计算机网络系统结构需采用三层网络架构&#xff1a;接入层、汇聚层、核心层。 核心层是…

Redis: 用于纯缓存模式需要注意的地方

这里写自定义目录标题 一、核心原理二、配置展示三、问题注意 一、核心原理 在某些场景下&#xff0c;我们只使用的是热点缓存数据&#xff0c;不需要数据的备份与恢复。纯缓存模式-禁用rdb持久化-禁用aof持久化。 二、配置展示 sava “” # 禁用rdb appendonly on # 禁用ao…

【Linux】在 bash shell 环境下,当一命令正在执行时,按下 control-Z 会?

目录 题目分析答案 题目 分析 ctrl-c&#xff1a; 发送 SIGINT 信号给前台进程组中的所有进程。常用于终止正在运行的程序&#xff1b;ctrl-z&#xff1a; 发送 SIGTSTP信号给前台进程组中的所有进程&#xff0c;常用于挂起一个进程&#xff1b;ctrl-d&#xff1a; 不是发送信…

Codeforces Round 969 (Div. 2) ABCD

A题&#xff1a;Doras Set 思路 贪心地想&#xff0c;如果可以的话&#xff0c;我们直接全用连续的3个&#xff0c;这样就能实现最多 但是给出的样例 1 1000 250 说明了有连续的三个不符合的情况 先考虑连续两个的情况&#xff0c;是一定符合gcd(x, x1)1的 因为x1-x1 &am…

力扣860-柠檬水找零(java详细题解)

题目链接&#xff1a;860. 柠檬水找零 - 力扣&#xff08;LeetCode&#xff09; 前情提要&#xff1a; 因为本人最近都来刷贪心类的题目所以该题就默认用贪心方法来做。 贪心方法&#xff1a;局部最优推出全局最优。 如果一个题你觉得可以用局部最优推出全局最优&#xff0…

C语言典型例题57

《C程序设计教程&#xff08;第四版&#xff09;——谭浩强》 例题4.9 判断整数是否为素数 代码&#xff1a; //《C程序设计教程&#xff08;第四版&#xff09;——谭浩强》 //例题4.9 判断整数是否为素数//【数学知识】素数&#xff1a;一个大于1的自然数&#xff0c;如果只…

Linux-vi编辑命令的常用用法

一、Linux系统vi编辑命令简单介绍‌ vi‌是Linux系统中一个非常流行的文本编辑器&#xff0c;它提供了强大的编辑功能&#xff0c;尤其是在命令行模式下&#xff0c;可以进行各种文本操作。 二、vi编辑模式介绍 ‌命令模式‌&#xff1a;默认模式&#xff0c;可以进行光标移…

HTTP协议(超文本传输协议)

HTTP请求消息 http请求消息组成&#xff1a; 请求行 &#xff1a;包含请求的方法 操作资源的地址 协议的版本号 http请求方法&#xff1a; GET&#xff1a;从服务器获取资源 POST&#xff1a;添加资源信息 PUT&#xff1a;请求服务器更新资源信息 DELETE&#xff1a;请…

MySQL 数据存储实现详解

MySQL 是一种流行的关系型数据库管理系统&#xff0c;其数据存储实现涉及多个核心组件和技术&#xff0c;确保数据的高效管理和可靠性。以下是对 MySQL 数据存储机制的详细解释&#xff1a; 1. 存储引擎 MySQL 通过不同的存储引擎来管理数据的存储和处理。每种存储引擎具有不…

ESD防静电监控系统助力电子制造行业转型升级

在电子制造行业中&#xff0c;静电危害不容小觑。ESD 防静电监控系统的出现&#xff0c;为行业转型升级带来强大助力。电子元件对静电极为敏感&#xff0c;微小的静电放电都可能损坏元件&#xff0c;影响产品质量。ESD 防静电监控系统能够实时监测生产环境中的静电状况&#xf…

AI-Talk开发板之LED

一、说明 AI-Talk开发板上有一颗用户LED&#xff0c;连接在CH32 PA2管脚&#xff0c;低电平亮&#xff0c;高电平灭。 相关电路图如下&#xff1a; 需要提前给CH32V003烧录特定的固件才能将CH32作为CSK6011A的exmcu&#xff0c;参考AI-Talk开发板更新CH32固件。 二、工程 …

C# 异步编程

栏目总目录 异步编程 async 和 await 关键字是 C# 5.0 引入的两个非常重要的关键字&#xff0c;它们一起工作&#xff0c;使得异步编程变得简单和直观。 async 关键字 async 关键字用于标记一个方法、lambda 表达式、匿名方法或局部方法作为异步方法。这告诉编译器该方法内部…

数据结构(三)——双向链表,循环链表,内核链表,栈和队列

双链表 产生原因&#xff1a;单链表只有一个指向后继的指针&#xff0c;如果要访问某节点的前驱结点&#xff0c;只能从头遍历&#xff0c;也就是访问后继节点的时间复杂度为1&#xff0c;访问前驱结点的时间复杂度为n。 而引入双链表使得在插入、删除的…

Django+Vue农产品销售系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 需要的环境3.2 Django接口层3.3 实体类3.4 config.ini3.5 启动类3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍&#xff1a;CSDN认证博客专家&#xff0c;CSDN平台Java领域优质创作者&…

vscode 快捷删除整个单词

在 Visual Studio Code (VSCode) 中删除单词可以通过几种不同的方法实现&#xff0c;主要取决于你使用的操作系统和键盘快捷键的偏好。以下是几种常见的方法&#xff1a; 方法一&#xff1a;使用键盘快捷键 在 Windows 和 Linux 上 删除光标后面的单词&#xff1a; Ctrl De…

目标跟踪算法——ByteTrack算法原理解析

文章目录 ByteTrack1. ByteTrack算法步骤&#xff1a;2. 算法解释2.1 模型初始化2.2 模型更新算法流程2.2.1 检测结果划分&#xff0c;划分为高分和较低分段2.2.2 高分段处理手段2.2.3 最优匹配与未匹配划分2.2.4 低分框再匹配2.2.5 未确认轨迹处理2.2.6 更新状态 2.3 匈牙利匹…

【大模型LLM第十一篇】微调自动化数据选择方式之MoDS

前言 来自中科院自动化所的paper MoDS: Model-oriented Data Selection for Instruction Tuning link&#xff1a;https://arxiv.org/pdf/2311.15653 github&#xff1a;https://github.com/CASIA-LM/MoDS 一、摘要 sft已经成为让LLM遵循用户指令的一种方式。通常&#xf…

C#线程同步

c#线程同步代码示例 仔细考虑下面这段代码是不是输出0 const int _max 1000000;private int _count 0;void Start(){Task task Task.Run(() >{Decr();});for (int i 0; i < _max; i){_count;}task.Wait();Debug.Log(_count);}void Decr(){for(int i 0; i < _max;…

YOLOv9改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

一、本文介绍 本文记录的是基于Shuffle Attention注意力模块的YOLOv9目标检测改进方法研究。Shuffle Attention模块通过独特的设计原理&#xff0c;在保持轻量级的同时实现了高效的特征注意力机制&#xff0c;增强了网络的表示能力。本文对YOLOv9的RepNCSPELAN4模块进行二次创…

EmguCV学习笔记 C# 9.2 VideoWriter类

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…