Day 31 贪心算法理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

embedded/2024/10/20 16:40:48/

算法>贪心算法理论基础

算法>贪心算法的本质:选择每一个阶段的局部最优,从而达到系统的整体最优

​ 贪心的套路就是没有套路,最好的策略就是举反例,因为大多数时候并不要求严格证明,只需要得到普遍性结论即可;

算法>贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

​ 做题的时候,只要想清楚局部最优是什么推导出全局最优就够了。

分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3 个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是 1,你只能让胃口值是 1 的孩子满足。所以你应该输出 1。

示例 2:

  • 输入: g = [1,2], s = [1,2,3]
  • 输出: 2
  • 解释:你有两个孩子和三块小饼干,2 个孩子的胃口值分别是 1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出 2.

提示:

  • 1 <= g.length <= 3 * 10^4

  • 0 <= s.length <= 3 * 10^4

  • 1 <= g[i], s[j] <= 2^31 - 1

    大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的;

​ 这种题的思路以局部最优换全局最优,思路就像田忌赛马一样;

​ 思路:排序饼干数组和小孩数组,然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量;

​ 代码如下:

class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());//排序胃口sort(s.begin(), s.end());//排序饼干int index =  s.size() - 1; // 饼干数组的下标int result = 0;for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口if (index >= 0 && s[index] >= g[i]) { // 遍历饼干,先喂胃口大的result++;index--;}//无须两个for循环,自减操作即可完成}return result;}
};

​ 如果把遍历胃口放在for循环里,遍历饼干放在循环体里,则需要更改遍历顺序,不然可能出现如下这种极端情况:

​ 这时需要更改遍历逻辑即可:

class Solution {
public:int findContentChildren(vector<int>& g, vector<int>& s) {sort(g.begin(), g.end());sort(s.begin(), s.end());int index =  0;for(int i = 0; i < s.size(); i++){if(index < g.size() && g[index] <= s[i]){//先喂胃口小的index++;}}return index;}
};

摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]

  • 输出: 2

    ​ 可以看出,删除的元素来自于单调子区间内的元素,此时就达到局部最优的最短单调区间;整个序列得到最多峰值,则局部最优达到整体最优;如下所示:

​ 整体思路即为判断 pre = nums[i] - nums[i - 1] 与 cur = nums[i + 1] - nums[i]是否为一正一负即记录一个峰值;

​ 考虑特殊情景:

​ 1.存在平坡; 2.两端元素;

​ 处理上下中间平坡:

​ 可见,此处需要考虑pre =0 && cur < 0 时,删除左边的重复元素,记录一个峰值;

​ 然后考虑数组两端:由于判断pre和cur需要三个元素确定,所以需要延长这个数组,即默认pre = 0 ;

​ 针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2);

​ 核心代码实现如下:

	int wiggleMaxLength(vector<int>& nums){if(nums.size() <= 1)	return nums.size();int prediff = 0;//前一个差值;int curdiff = 0;//当前差值int res = 1;//默认右边有一个峰值for(int i = 0; i < nums.size() - 1; i++){//不处理最后一个元素curdiff = nums[i + 1] - nums[i];if((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0)){res++;}prediff = curdiff;//实时更新}return res;}

​ 这段代码提交是有误的,因为没有考虑另一种情况;

​ 即单调增的平坡状态:

​ 可以看出,上面的代码在三个地方都记录峰值,但其实结果应为2,因为单调中的平坡不能算峰值(即摆动);

出问题是因为实时更新了 prediff

​ 只需要在这坡度摆动变化的时候,更新prediff即可,这样 prediff在单调区间有平坡的时候就不会发生变化,造成误判;

​ 即:

	int wiggleMaxLength(vector<int>& nums){if(nums.size() <= 1)	return nums.size();int prediff = 0;//前一个差值;int curdiff = 0;//当前差值int res = 1;//默认右边有一个峰值for(int i = 0; i < nums.size() - 1; i++){//不处理最后一个元素curdiff = nums[i + 1] - nums[i];if((prediff <= 0 && curdiff > 0) || (prediff >= 0 && curdiff < 0)){res++;prediff = curdiff;}//prediff = curdiff;//实时更新}return res;}

最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

​ 很简单的想法是暴力法,两个for循环搞事情,肯定不这么整;

​ 思考局部最优思路:当**连续和为负数**时,舍弃这个连续和,然后从下一个元素重新开始寻找子序列;
在这里插入图片描述

​ [注]:

​ 1.并非见到负数就舍弃,使用res记录count的值即可,这样能保证res一直是最大值,同时res也保证了终止条件,因为本题只要求返回最大和;

​ 2.负数只会让下一次相加后的结果变得更小,所以舍弃所有连续和为负的结果;

​ 代码如下:

class Solution {
public:int maxSubArray(vector<int>& nums) {int res = INT32_MIN;//记录最大值int count = 0;for(int i = 0; i < nums.size(); i++){count += nums[i];if(count > res)	res = count;if(count <= 0)	count = 0;}return res;}
};

http://www.ppmy.cn/embedded/10352.html

相关文章

虚拟化及Docker基础

一、虚拟化 1.1 云端 1.2 云计算服务模式分层 1.3 虚拟化架构 1.3.1 寄居架构 1.3.2 原生架构 1.4 虚拟化产品 1.4.1 仿真虚拟化产品&#xff08;对系统硬件没有要求&#xff0c;性能最低&#xff09; 1.4.2 半虚拟化 &#xff08;虚拟机可以使用真机物理机&#xff09…

Docker Compose 容器编排

什么是 Docker Compose docker-compose 是 Docker 官方的开源项目&#xff0c;使用 python 编写&#xff0c;实现上调用了 Docker 服务的 API 进行容器管理及编排&#xff0c;其官方定义为定义和运行多个 Docker 容器的应用。 docker-compose 中有两个非常重要的概念&#xff…

笔记:定义一个函数,要求从键盘输人两个数,调用该函数得出两个数的最大公约数,并显示在屏幕上。

文章目录 前言一、什么是调用该函数得出两个数的最大公约数&#xff1f;二、编写代码1.代码2.优化代码 总结 前言 题目&#xff1a;定义一个函数&#xff0c;要求从键盘输人两个数&#xff0c;调用该函数得出两个数的最大公约数&#xff0c;并显示在屏幕上。 在数学中&#x…

科技破壁,盲人出行:实时避障与识别,开启无障碍新生活

身为一名资深记者&#xff0c;我深知盲人朋友在日常出行中面临的重重挑战。然而&#xff0c;随着科技的日新月异&#xff0c;一款名叫蝙蝠避障专为盲人安全出行设计的应用正在以其实时避障与拍照识别功能&#xff0c;为视障群体开辟一条通往无障碍生活的光明大道。 首先…

数据结构——6.4 图的应用

6.4 图的应用 概念 最小生成树 对于一个带权连通无向图G ( E)&#xff0c;生成树不同&#xff0c;每棵树的权(即树中所有边上的权值之和)也可能不同。设R为G的所有生成树的集合&#xff0c;若T为R中边的权值之和最小的生成树&#xff0c;则T称为G的最小生成树 (Minimum-Spanni…

Python --- 新手小白自己动手安装Anaconda+Jupyter Notebook全记录(Windows平台)

新手小白自己动手安装AnacondaJupyter Notebook全记录 这两天在家学Pythonmathine learning&#xff0c;在我刚刚入手python的时候&#xff0c;我写了一篇新手的入手文章&#xff0c;是基于Vs code编译器的入手指南&#xff0c;里面包括如何安装python&#xff0c;以及如何在Vs…

1.求指定宽度的文本的高度,2.ubuntu下ping ipv6,3.git提示:终止提交因为提交说明为空

1.如何求指定宽度的文本的高度 paintEvent(QPaintEvent *event) {QPainter painter(this);QString text "Invalid parameter passed to C runtime function.";QFontMetrics fm(qApp->font());QTextDocument doc(text);doc.setDefaultFont(painter.font());doc.s…

Java中使用Graphics2D实现字符串- 竖直并居中排序显示算法

效果&#xff1a; 代码&#xff1a; public static void drawMyString(Graphics textGraphics, String text) {// 每列显示的汉字数量int columnSize 7;// 文字之间的垂直间距int verticalSpacing 75;// 获取字体渲染上下文FontMetrics fm textGraphics.getFontMetrics();//…