【STM32】RTT-Studio中HAL库开发教程五:UART的DMA应用

embedded/2024/9/19 15:16:17/ 标签: stm32, 嵌入式硬件, 单片机

文章目录

  • 一、简介
    • 1.关于DMA
    • 2.DMA使用场景
    • 3.DMA控制结构
    • 4.IDLE空闲中断
    • 5.实现方法
  • 二、RTT配置
  • 三、串口收发流程
  • 四、完整代码
  • 五、测试验证

一、简介

1.关于DMA

   DMA(Direct Memory Access,直接存储器访问) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依赖于CPU的大量中断负载。否则,CPU需要从来源把每一片段的资料复制到暂存器,然后把它们再次写回到新的地方。在这个时间中,CPU对于其他的工作来说就无法使用。
  简单的来说,能控制主存内部读写,这样有利于减轻CPU负担,加快读取速度。
  在没有DMA之前,串口每次发送数据时都要由CPU将源地址上的数据拷贝到串口发送的相关寄存器上;串口每次接收数据时都要由CPU将发送来的数据拷贝到主存上。而加了DMA后,只需要告诉DMA源地址和目标地址,DMA通道就能够自动进行数据的转移,即CPU只需要告诉DMA:串口需要发送的数据在哪里,串口接收到的数据应该存在哪里,运输的工作则交由DMA去做,运输期间CPU就可以去处理别的事情,这就大大提高了CPU的运行效率。


2.DMA使用场景

DMA用在只需要传输数据,不需要处理数据的地方,有三种传输方式:

  • 外设→存储器 (例如:将串口RDR寄存器写入某数据buf)
  • 存储器→外设 (例如:将某数据buf写入串口TDR寄存器)
  • 存储器→存储器(例如:复制某特别大的数据buf)

3.DMA控制结构

Stm32F4最多有:2个DMA控制器,各8个数据流,每个数据流有8个通道(或请求),每个通道有一个仲裁器,用于处理请求的优先级。
在这里插入图片描述


4.IDLE空闲中断

(1)STM32 IDLE 接收空闲中断—接受完一帧数据,触发中断
  在使用串口接受字符串时,可以使用空闲中断(IDLEIE置1,即可使能空闲中断),这样在接收完一个字符串,进入空闲状态时,即将IDLE置1,便会激发一个空闲中断。在中断处理函数,我们可以解析这个字符串。

(2)STM32的IDLE的中断产生条件
  在串口无数据接收的情况下,不会产生,当清除IDLE标志位后,必须有接收到第一个数据后,才开始触发,一但接收的数据断流,没有接收到数据,即产生IDLE中断

(3)STM32 RXNE接收数据中断—接受到一个字节的数据,触发中断
  当串口接收到一个bit的数据时,(读取到一个停止位) 便会触发 RXNE接收数据中断


5.实现方法

利用串口IDLE空闲中断的方式接收一帧数据,方法如下:

  • 选择一个串口,并配置成空闲中断IDLE模式且使能DMA接收,并同时设置接收缓冲区和初始化DMA。
  • 初始化完成之后,当外部给单片机发送数据的时候,假设这次接受的数据长度是200个字节,那么在单片机接收到一个字节的时候并不会产生串口中断,而是DMA在后台把数据默默地搬运到你指定的缓冲区数组里面。
  • 当整帧数据发送完毕之后串口才会产生一次中断,此时可以利用__HAL_DMA_GET_COUNTER(&hdma_usart1_rx)。
  • 函数计算出当前DMA接收存储空间剩余字节:本次的数据接受长度=预先定义的接收总字节-接收存储空间剩余字节。

例如:本次串口接受200个字节,HAL_UART_Receive_DMA(&huart1,rx_buffer,200);//打开DMA接收。然后我发送了HelloWord9个字节的数据长度,那么此时 GET_COUNTER函数读出来 接收存储空间剩余字节 就是191个字节,实际接受的字节(9) = 预先定义的接收总字节(200) - __HAL_DMA_GET_COUNTER()(191):9 = 200-191


二、RTT配置

(1)配置串口:主要是配置使用的串口号,以及打开RTT所需要的驱动函数。

/** After configuring corresponding UART or UART DMA, you can use it.** STEP 1, define macro define related to the serial port opening based on the serial port number*                 such as     #define BSP_USING_UART1** STEP 2, according to the corresponding pin of serial port, define the related serial port information macro*                 such as     #define BSP_UART1_TX_PIN       "PA9"*                             #define BSP_UART1_RX_PIN       "PA10"** STEP 3, if you want using SERIAL DMA, you must open it in the RT-Thread Settings.*                 RT-Thread Setting -> Components -> Device Drivers -> Serial Device Drivers -> Enable Serial DMA Mode** STEP 4, according to serial port number to define serial port tx/rx DMA function in the board.h file*                 such as     #define BSP_UART1_RX_USING_DMA**/#define BSP_USING_UART1
#define BSP_UART1_TX_PIN       "PA9"
#define BSP_UART1_RX_PIN       "PA10"#define BSP_USING_UART3
#define BSP_UART3_TX_PIN       "PD8"
#define BSP_UART3_RX_PIN       "PD9"

(2)配置初始化函数:主要是使用CubeMx配置生成串口的初始化代码,并将代码复制到board.c中。

extern DMA_HandleTypeDef hdma_usart3_rx;
extern DMA_HandleTypeDef hdma_usart3_tx;/**
* @brief USART MSP Initialization
* This function configures the hardware resources used in this example
* @param husart: USART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{GPIO_InitTypeDef GPIO_InitStruct = {0};if (huart->Instance == USART3){/* Peripheral clock enable */__HAL_RCC_USART3_CLK_ENABLE();__HAL_RCC_GPIOD_CLK_ENABLE();/**USART3 GPIO ConfigurationPD8     ------> USART3_TXPD9     ------> USART3_RX*/GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_PULLUP;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF7_USART3;HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);/* USART3 DMA Init *//* USART3_RX Init */hdma_usart3_rx.Instance = DMA1_Stream1;hdma_usart3_rx.Init.Channel = DMA_CHANNEL_4;hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE;hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE;hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;hdma_usart3_rx.Init.Mode = DMA_NORMAL;hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW;hdma_usart3_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;if (HAL_DMA_Init(&hdma_usart3_rx) != HAL_OK){Error_Handler();}__HAL_LINKDMA(huart, hdmarx, hdma_usart3_rx);/* USART3_TX Init */hdma_usart3_tx.Instance = DMA1_Stream3;hdma_usart3_tx.Init.Channel = DMA_CHANNEL_4;hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE;hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE;hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;hdma_usart3_tx.Init.Mode = DMA_NORMAL;hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW;hdma_usart3_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;if (HAL_DMA_Init(&hdma_usart3_tx) != HAL_OK){Error_Handler();}__HAL_LINKDMA(huart, hdmatx, hdma_usart3_tx);/* USART3 interrupt Init */HAL_NVIC_SetPriority(USART3_IRQn, 0, 0);HAL_NVIC_EnableIRQ(USART3_IRQn);}
}

三、串口收发流程

(1)接收数据的流程:
在这里插入图片描述

  • 首先在初始化的时候打开DMA接收
  • 当MCU通过USART接收外部发来的数据时,在进行第①②③步的时候,DMA直接将接收到的数据写入缓存rx_buffer[100] //接收数据缓存数组
  • 程序此时也不会进入接收中断,在软件上无需做任何事情,要在初始化配置的时候设置好配置就可以了。

(2)数据接收完成的流程:

  • 当数据接收完成之后产生接收空闲中断④
  • 在中断服务函数中:
      a:判断是否为IDLE接受空闲中断
      b:在中断服务函数中将接收完成标志位置1
      c:关闭DMA防止在处理数据时候接收数据,产生干扰。
      d:计算出接收缓存中的数据长度,清除中断位,
  • while循环 主程序流程:
      a:主程序中检测到接收完成标志被置1
      b:进入数据处理程序,现将接收完成标志位置0,
      c:将接收到的数据重新发送到上位机
      d:重新设置DMA下次要接收的数据字节数,使能DMA进入接收数据状态。

四、完整代码

1.uart.c文件

#include "uart.h"volatile uint8_t rx_len = 0;            // 接收一帧数据的长度
volatile uint8_t recv_end_flag = 0;     // 一帧数据接收完成标志
uint8_t rx_buffer[100]={0};             // 接收数据缓存数组void MX_USART3_UART_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA1_CLK_ENABLE();huart3.Instance = USART3;huart3.Init.BaudRate = 115200;huart3.Init.WordLength = UART_WORDLENGTH_8B;huart3.Init.StopBits = UART_STOPBITS_1;huart3.Init.Parity = UART_PARITY_NONE;huart3.Init.Mode = UART_MODE_TX_RX;huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart3.Init.OverSampling = UART_OVERSAMPLING_16;if (HAL_UART_Init(&huart3) != HAL_OK){Error_Handler();}/* DMA interrupt init *//* DMA1_Stream1_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);/* DMA1_Stream3_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA1_Stream3_IRQn, 0, 0);HAL_NVIC_EnableIRQ(DMA1_Stream3_IRQn);__HAL_UART_ENABLE_IT(&huart3, UART_IT_IDLE); //使能IDLE中断//DMA接收函数,此句一定要加,不加接收不到第一次传进来的实数据,是空的,且此时接收到的数据长度为缓存器的数据长度HAL_UART_Receive_DMA(&huart3, rx_buffer, BUFFER_SIZE);
}/*** @brief 串口发送功能函数* @param buf:发送数据* @param len:数据长度*/
void DMA_Usart_Send(uint8_t *buf,uint8_t len)
{// 判断是否发送正常,如果出现异常则进入异常中断函数if (HAL_UART_Transmit_DMA(&huart3, buf, len) != HAL_OK){Error_Handler();}
}/*** @brief 串口接收功能函数* @param Data:接收数据* @param len:接收长度*/
void DMA_Usart1_Read(uint8_t *Data,uint8_t len)
{// 重新打开DMA接收HAL_UART_Receive_DMA(&huart3, Data, len);
}/*** @brief This function handles DMA1 stream1 global interrupt.*/
void DMA1_Stream1_IRQHandler(void)
{HAL_DMA_IRQHandler(&hdma_usart3_rx);
}/*** @brief This function handles DMA1 stream3 global interrupt.*/
void DMA1_Stream3_IRQHandler(void)
{HAL_DMA_IRQHandler(&hdma_usart3_tx);
}/*** @brief This function handles USART3 global interrupt.*/
void USART3_IRQHandler(void)
{uint32_t tmp_flag = 0;uint32_t temp;tmp_flag = __HAL_UART_GET_FLAG(&huart3, UART_FLAG_IDLE);    // 获取IDLE标志位if ((tmp_flag != RESET))                                    // idle标志被置位{
#if 1__HAL_UART_CLEAR_IDLEFLAG(&huart3);                     // 清除标志位
#elsetemp = huart3.Instance->SR;                             // 清除状态寄存器SR,读取SR寄存器可以实现清除SR寄存器的功能temp = huart3.Instance->DR;                             // 读取数据寄存器中的数据
#endifHAL_UART_DMAStop(&huart3);                              // 停止DMA传输,防止干扰#if 1temp = __HAL_DMA_GET_COUNTER(&hdma_usart3_rx);          // 获取DMA中未传输的数据个数
#elsetemp  = hdma_usart3_rx.Instance->NDTR;                  // 读取NDTR寄存器,获取DMA中未传输的数据个数,
#endifrx_len = BUFFER_SIZE - temp;                            // 总计数减去未传输的数据个数,得到已经接收的数据个数recv_end_flag = 1;                                      // 接受完成标志位置1}HAL_UART_Receive_DMA(&huart3, rx_buffer, BUFFER_SIZE);      // 重新打开DMA接收HAL_UART_IRQHandler(&huart3);
}

2.uart.h文件

#ifndef APPLICATIONS_UART_H_
#define APPLICATIONS_UART_H_#include <rtthread.h>
#include <drv_common.h>UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;#define BUFFER_SIZE  100extern  volatile uint8_t rx_len ;       // 接收一帧数据的长度
extern volatile uint8_t recv_end_flag;  // 一帧数据接收完成标志
extern uint8_t rx_buffer[100];          // 接收数据缓存数组extern void MX_USART3_UART_Init(void);
extern void DMA_Usart_Send(uint8_t *buf,uint8_t len);
extern void DMA_Usart1_Read(uint8_t *Data,uint8_t len);#endif /* APPLICATIONS_UART_H_ */

3.main.c文件

#include <rtthread.h>#define DBG_TAG "main"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>
#include <string.h>
#include "uart.h"int main(void)
{int count = 1;MX_USART3_UART_Init();while (count){if (recv_end_flag == 1)     // 接收完成标志{DMA_Usart_Send(rx_buffer, rx_len);rx_len = 0;             // 清除计数recv_end_flag = 0;      // 清除接收结束标志位memset(rx_buffer, 0, rx_len);}}return RT_EOK;
}

五、测试验证

  通过将程序下载到单片机中,可以使用串口助手来进行数据的发送,如下可以看到可以进行正常数据的收发,并且使用uart的DMA功能,可以更好的改善CPU的运行效率,并且也不用暂用CPU,加快器性能。
在这里插入图片描述



http://www.ppmy.cn/embedded/101774.html

相关文章

Ubuntu上搭建Nginx环境

1. 软件包下载 nginx下载地址 下载linux版本的nginx&#xff0c;如图圈示 2. 将下载好的软件包上传至Linux服务器 假设上传到 /opt/nginx 目录,进入目录 cd /opt/nginx解压&#xff0c;根据版本自行修改版本号 tar zxvf nginx-1.16.0.tar.gz3.安装 安装编译所需的依赖&a…

从0到1,AI我来了- (6)AI应用-ComfyUI-I

满天飞的AI图片生成&#xff0c;是否激发了你的创作欲望&#xff1f; 我们来认识下Comfy&#xff0c;然后看下如何安装&#xff1f;再跑几个案例&#xff0c;看下comfyUI给我们带来的 ComfyUI 是什么&#xff1f;解决什么问题&#xff1f;如何安装&#xff0c;并使用ComfyUI …

大模型基础环境部署之一:安装 Nvidia 的驱动(详细实操版)

一、系统准备前置条件 1、更新软件包列表 sudo apt-get update2、安装编译工具和依赖项 sudo apt-get install gcc sudo apt-get install make sudo apt-get install g注&#xff1a;如果在安装 g 时遇到错误消息&#xff1a;“***you do not appear to have libc header fi…

【架构-25】K8S

什么是K8S&#xff1f; K8S 是 Kubernetes 的缩写&#xff0c;是一个开源的容器编排系统&#xff0c;用于自动化部署、扩展和管理容器化应用程序。 Kubernetes 具有以下主要特点和优势&#xff1a; 一、容器编排 自动化部署&#xff1a;可以自动将容器化的应用程序部署到集群中…

8月23日,每日信息差

第一、未来网络试验设施&#xff0c;是我国通信与信息领域首个国家重大科技基础设施。记者22日从在江苏举行的第八届未来网络发展大会上获悉&#xff0c;未来网络试验设施已正式建成。 第二、近日&#xff0c;百度智能云&知乎Tech Day技术交流会在北京举行。会上&#xff…

C++学习笔记——均值

一、题目描述 二、代码 #include <iostream> #include<iomanip>using namespace std;int main() {int n;cin >> n;double a[n];for(int i0;i<n;i){cin >> a[i];}double num 0;for(int i0;i<n;i){num num a[i];}double result num / n;cout &…

你是如何克服编程学习中的挫折感的?——从Bug中找到成长的契机

你是如何克服编程学习中的挫折感的&#xff1f; 从Bug中找到成长的契机 在编程的世界里&#xff0c;Bug 是不可避免的。无论是初学者还是经验丰富的开发者&#xff0c;都不可能完全避免 Bug 的出现。与其视 Bug 为敌人&#xff0c;不如将其看作成长的契机。每一个 Bug 的出现&…

【单片机】PIC单片机编程里前面的配置文件含义,xc.h的#pragma配置

#include <xc.h> #include <stdio.h> #include <stdlib.h> #include <string.h>/* CONFIG1 */ #pragma config FOSC = XT /* Oscillator Selection bits (XT oscillator: Crystal/resonator on R

【MySQL】MyISAM Static 与 MyISAM Dynamic 的区别

MyISAM Static 与 MyISAM Dynamic 的区别 1. 存储结构 MyISAM Static&#xff1a; 表的每一行大小是固定的。适合存储相同长度的数据类型&#xff0c;例如 CHAR 和 INT。由于行大小固定&#xff0c;存储效率较高。 CREATE TABLE static_table (id INT,name CHAR(50) -- 固定长…

Linux驱动入门实验班——DAC模块驱动(附百问网视频链接)

目录 前言 一、 SPI数据结构 1.SPI设备驱动 2.SPI设备数据结构 二 、函数接口 1.spi_sync_transfer 2.spi_register_driver 三、DAC 1.数据格式 2.数据结构 四、源码 驱动 应用 课程链接 前言 在这里主要记录学习韦东山老师Linux驱动人入门实验班的笔记&#xff0…

先从路径优化开始学习FastPlanner之B样条曲线平滑路径(一):从拉格朗日插值到B样条曲线

参考B站视频学习 注&#xff1a;我会列出学习他人的博客&#xff0c;但我不涉及具体推导&#xff0c;原理讲解&#xff0c;旨在于理解必须概念后写代码出效果。 给若干点如何获得一条平滑的曲线&#xff1f; 两个方法插值、拟合 插值要经过给定点&#xff0c;拟合不用经过。 经…

【mysql集群之组复制】

目录 一、 mysql高可用之组复制 (MGR)组复制单主和多主模式实现mysql的组复制 二、 mysql-router&#xff08;mysql路由&#xff09;实现负载均衡 一、 mysql高可用之组复制 (MGR) MySQL Group Replication(简称 MGR )是 MySQL 官方于 2016 年 12 月推出的一个全新的高可用与高…

嵌入式面经篇十——驱动开发

文章目录 前言一、驱动开发1、Linux 驱动程序的功能是什么?2、内核程序中申请内存使用什么函数?3、内核程序中申请内存和应用程序时申请内存有什么区别?4、自旋锁和信号量在互斥使用时需要注意什么?在中断服务程序里面的互斥是使用自旋锁还是信号量?5、驱动卸载异常可能是…

初识Linux · yum和vim

目录 前言&#xff1a; 1 yum 1.1 yum是什么&#xff1f; 1.2 Centos的生态和yum的本地配置 1.3 yum的相关操作 2 vim 前言&#xff1a; 我们学习Linux的时候&#xff0c;是有编程语言的基础的&#xff0c;那么呢&#xff0c;我们学习Linux的时候最迫切的就是希望能打印…

TinaSDKV2.0 自定义系统开发

TinaSDKV2.0 自定义系统开发 什么是自定义系统&#xff1f; TinaSDK Kconfig界面配置 Tina Linux采用 Kconfig 机制对 SDK 和内核进行配置。 Kconfig 是一种固定格式的配置文件。Linux 编译环境中的 menuconfig 程序可以识别这种格式的配置文件&#xff0c;并提取出有效信息…

HTTP代理端口的設置應用

HTTP代理端口&#xff08;HTTP Proxy Port&#xff09;是指在使用HTTP代理伺服器時&#xff0c;客戶端與代理伺服器之間通信所使用的端口號。HTTP代理伺服器作為客戶端和目標伺服器之間的仲介&#xff0c;通過轉發HTTP請求和回應來實現客戶端隱匿、緩存、訪問控制等功能。理解H…

【工具使用】 idea中从当前分支创建新分支之后,更新提示 cat not update 分支名称 has not tracked branch

背景&#xff1a;我需要从dev分支拉取一个新的分支&#xff0c;在这个新分支上进行某个特定需求的开发&#xff1b;怎么拉取呢&#xff0c;拉取又遇见了问题&#xff0c;怎么解决呢 &#xff1f; 一起来记录一下 首先在IDEA中你想要从哪个分支进行创建新分支&#xff0c;需要先…

Python 3.11 从入门到实战1(环境准备)

本篇文章是python3.11的学习开篇&#xff0c;我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;获得python基础学习与实例、实践相结合&#xff0c;使我们完全掌握python。并做到独立完成项目开发的能力。 今天的谈论的比较简单&#xff0c;也是后续学习的基础。pyt…

机器学习之 K-means算法的代码实现

K-means 算法简介 K-means 是一种常用的无监督学习算法&#xff0c;主要用于数据聚类。它的主要思想是将数据集中的数据分成 K 个簇&#xff08;Cluster&#xff09;&#xff0c;使得簇内的数据点尽可能相似&#xff0c;而簇间的差异尽可能大。K-means 算法的核心步骤包括初始…

Kali linux 网络设备未托管,无eht0解决方案

Kali Linux 不能联网上网 解决方法汇总 启用网卡&#xff0c;并查看网卡是否有IP&#xff1f;如果没有IP&#xff0c;就分配IP&#xff1b; rootkali:~# ifconfig eth0 up //启用网卡 rootkali:~# ifconfig -a //查看IP rootkali:~# dhclient eth0 // 分配IP有线网络&#…