K210视觉识别模块学习笔记8:Mx_yolo3本地模型训练环境搭建_部署模型到亚博canmv(失败)

devtools/2024/12/31 1:03:22/

今日开始学习K210视觉识别模块: 本地模型训练环境搭建

亚博智能      K210视觉识别模块......  

固件库:        canmv_yahboom_v2.1.1.bin

本地训练      Mx_yolo3

 这里就简单地提示一下下载安装哪些软件,然后主要是使用Mx_yolo3 进行本地训练模型的......

本文不用浪费时间看了! 这次对本地训练出的模型的部署是失败的

不知道为何,也许是亚博智能固件库对模型的处理导入函数写的与Mx_yolo3 生成的模型不适配???

 文章提供测试代码讲解、完整代码贴出、测试效果图、完整工程下载

目录

配置要求:

下载安装的软件:

 Mx_yolov3本地训练自己的模型

 采集图片数据集:

标注处理数据集:

训练模型:

编程导入模型

源代码如下:

修改步骤如下:

 修改后的代码如下:

测试识别效果:

 网上查阅资料贴出:


配置要求:

win10电脑,最好有显卡GPU,我的配置如下:

下载安装的软件:

这里制作提示要安装哪些软件环境啥的,具体细节省略,下方网上查阅资料标出的文章有具体细节

Mx_yolov3的安装并使用GPU训练_mx yolov3 3.0下载-CSDN博客

 1、Mx_yolov3

 2.CUDA和CUDNN

 3、Python3.7.3

 Mx_yolov3本地训练自己的模型

这里详细讲一下如何使用 Mx_yolov3本地训练自己的模型

就以识别鼠标为例,从获取数据集、标注处理数据集、训练模型、导入模型为顺序讲·

 采集图片数据集:

这里说明必须使用K210来拍摄采集数据图片,并尽可能多的图片

这次我对着鼠标拍摄了58张不同角度的图片,实际为了准确率,这点数据集明显是不够的,

实际最好需要几百张

标注处理数据集:

打开文件夹可以打开采集好的所有数据图片(放在一个文件夹中)

英文输入法下,按‘W’可以与鼠标配合开始绘制标注框图

选择保存文件夹可以将标注好的xml文件选择地方保存好

 这里我将所有图片放在了imagine文件夹中,将标注好的xml文件放在xml文件夹:

训练模型:

将训练图片与标注的俩个文件夹地址选择好,填好参数啥的就能训练了:

等待训练完成后就能导出模型了:

编程导入模型

解压导出的模型压缩包后,只有一个komdel、label是我们需要用到的:

先将mx.kmodel文件复制到SD卡

因为固件库的原因,它的boot代码我们无法使用,但需要打开boot来复制它的anchor内容:

这里我们之前在mixhub网站训练模型的代码来导入使用它的模型:

源代码如下:

import sensor, image, time, lcd, gc, cmath
from maix import KPUlcd.init()                          # Init lcd display
lcd.clear(lcd.RED)                  # Clear lcd screen.# sensor.reset(dual_buff=True)      # improve fps
sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
#sensor.set_vflip(True)              # 翻转摄像头
#sensor.set_hmirror(True)            # 镜像摄像头
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.print("ready load model")labels = ["six"] #类名称,按照label.txt顺序填写
anchor = (1.06, 1.22, 1.36, 1.56, 1.75, 2.03, 2.41, 2.88, 3.58, 4.45) # anchors,使用anchor.txt中第二行的值kpu = KPU()
# 从sd或flash加载模型
kpu.load_kmodel('/sd/det.kmodel')
#kpu.load_kmodel(0x300000, 584744)
kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.6, nms_value=0.3, classes=len(labels))while(True):gc.collect()clock.tick()img = sensor.snapshot()kpu.run_with_output(img)dect = kpu.regionlayer_yolo2()fps = clock.fps()if len(dect) > 0:for l in dect :a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))info = "%s %.3f" % (labels[l[4]], l[5])a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)print(info)del infoa = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)lcd.display(img)

修改步骤如下:

根据上面提供的源代码进行修改:

先修改导入模型的名称为刚才训练好的kmodel的名称:

在复制软件训练好的boot.py文件中的anchor数据到代码中

最后复制label的类名称到代码中:

 修改后的代码如下:


import sensor, image, time, lcd, gc, cmath
from maix import KPUlcd.init()                          # Init lcd display
lcd.clear(lcd.RED)                  # Clear lcd screen.# sensor.reset(dual_buff=True)      # improve fps
sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
#sensor.set_vflip(True)              # 翻转摄像头
#sensor.set_hmirror(True)            # 镜像摄像头
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.print("ready load model")labels = ["mouse"] #类名称,按照label.txt顺序填写
anchor = (2.71875, 3.578124999999999, 3.1875, 5.125, 2.46875, 3.125, 2.90625, 3.96875, 2.28125, 4.40625) # anchors,使用anchor.txt中第二行的值kpu = KPU()
# 从sd或flash加载模型
kpu.load_kmodel('/sd/mx.kmodel')
#kpu.load_kmodel(0x300000, 584744)
kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.4, nms_value=0.3, classes=len(labels))while(True):gc.collect()clock.tick()img = sensor.snapshot()kpu.run_with_output(img)dect = kpu.regionlayer_yolo2()fps = clock.fps()if len(dect) > 0:for l in dect :if l[5]>0.7:a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))info = "%s %.3f" % (labels[l[4]], l[5])a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)print(info)del infoa = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)lcd.display(img)

测试识别效果:

惨不忍睹的识别效果....不知道是亚博智能有关anchor以及yolov固件库不兼容问题还是什么..

将限制不限制置信度L[5]>0.7的语句删除掉,它甚至能全屏都是mouse:

 网上查阅资料贴出:

关于Mx_yolo3的模型训练详细教程[保姆式教程] DF创客社区

 Mx-yolov3+Maixpy+ K210进行本地模型训练和目标检测-CSDN博客

k210部署自行训练的口罩识别模型_k210固件和亚博固件-CSDN博客


http://www.ppmy.cn/devtools/86126.html

相关文章

cpp学习记录03

结构体 定义:用户自定义符合数据类型,可以包含不同类型的不同成员。 //声明结构体 struct 结构体类型(自己起名) {成员1类型 成员1名称;。。。成员N类型 成员N名称;} 基本用法(类似class&…

C++ STL unique 用法

一&#xff1a;概述 去除序列中连续重复的元素&#xff0c;通常给定的序列是已排序的。 二&#xff1a;用法 #include <vector> #include <algorithm> #include <iostream>int main() {std::vector<int> data{1, 1, 2, 2, 3, 4, 5, 6, 6, 6};//std::…

第三届人工智能、物联网和云计算技术国际会议(AIoTC 2024,9月13-15)

第三届人工智能、物联网与云计算技术国际会议(AIoTC 2024)将于2024年9月13日-15日在中国武汉举行。 本次会议由华中师范大学伍伦贡联合研究院与南京大学联合主办、江苏省大数据区块链与智能信息专委会承办、江苏省概率统计学会、江苏省应用统计学会、Sir Forum、南京理工大学、…

【FAS】《The Research of RGB Image Based Face Anti-Spoofing》

文章目录 1、原文2、相关工作3、基于特征解耦的人脸活体检测算法3.1、方法3.2、实验结果 4、基于解构与组合的人脸活体检测方法4.1、方法4.2、实验 5、作者总结6、结论&#xff08;own&#xff09;7、附录7.1、CycleGAN7.2、InfoGAN7.3、3D Face 1、原文 [1]张克越.基于RGB图像…

LocalDateTime的序列化和反序列化

背景 最近定位出一个LocalDateTime序列化相关的问题&#xff0c;简单记录一下。本文重点介绍Jackson对LocalDateTime的序列化和反序列化&#xff0c;并结合Spring应用场景进行介绍。 1.LocalDateTime与字符串转换 可以通过DateTimeFormatter实现LocalDateTime与字符串的相互…

Java设计模式—单例模式(Singleton Pattern)

目录 一、定义 二、应用场景 三、具体实现 示例一 示例二 四、懒汉与饿汉 饿汉模式 懒汉模式 五、总结 六、说明 一、定义 二、应用场景 ‌单例模式的应用场景主要包括以下几个方面&#xff1a; ‌日志系统&#xff1a;在应用程序中&#xff0c;通常只需要一个日…

如何实现PostgreSQL对某一张表的WAL日志进行记录

PostgreSQL 没有内置的 binlog&#xff08;binary log&#xff09;机制像 MySQL 那样。它使用 Write-Ahead Logging (WAL) 来记录数据库的变更。要将这些变更记录到某张表中&#xff0c;通常可以使用逻辑复制&#xff08;Logical Replication&#xff09;和触发器&#xff08;T…

【Gin】架构的精妙编织:Gin框架中组合模式的革新实践与技术深度解析(上)

【Gin】架构的精妙编织&#xff1a;Gin框架中组合模式的革新实践与技术深度解析(上) 大家好 我是寸铁&#x1f44a; 【Gin】架构的精妙编织&#xff1a;Gin框架中组合模式的革新实践与技术深度解析(上)✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 本次文章分为上下两部分…