【c++】vector的使用

devtools/2024/11/14 20:51:36/

Alt

🔥个人主页Quitecoder

🔥专栏c++笔记仓

Alt

朋友们大家好,我们本篇来到一个新的容器,vector的讲解和使用

目录

  • `1.vector简单介绍`
  • `2.vector的使用`
    • `2.1构造函数`
    • `2.2遍历vector`
    • `2.3对容量操作`
    • `2.4vector的增删查改`

1.vector简单介绍

在这里插入图片描述

vector是表示可变大小数组的序列容器

在这里插入图片描述

就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理

在这里插入图片描述

本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小

在这里插入图片描述

vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的

在这里插入图片描述

因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长

与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好

2.vector的使用

2.1构造函数

在这里插入图片描述

  1. Default constructor (default (1)):

    explicit vector (const allocator_type& alloc = allocator_type());
    

    这是 std::vector 的默认构造函数。它创建一个空的 vector 对象,不含有任何元素。可选参数 alloc 是一个分配器对象,用于指定内存分配模型(后面会学到)。explicit 关键字表示构造函数防止隐式转换或复制初始化。大多数时候,你可以简单地省略分配器,因为它有一个默认值。

  2. Fill constructor (fill (2)):

    explicit vector (size_type n, const value_type& val = value_type(),const allocator_type& alloc = allocator_type());
    

    这个构造函数创建了一个含有 n 个元素的 vector,每个元素都是 val 的复本(副本)。val 是可选的;如果不提供,则使用该类型的默认构造函数创建元素。同样,alloc 是可以省略的可选分配器。explicit 关键字仅在只提供了 n 参数的情况下有作用,当同时提供 nval 时,可以使用复制初始化

  3. Range constructor (range (3)):

    template <class InputIterator>
    vector (InputIterator first, InputIterator last,const allocator_type& alloc = allocator_type());
    

    这个构造函数使用两个迭代器 firstlast,这两个迭代器指定了一个序列的范围,来创建 vector。这个范围包括从 firstlast 之间的所有元素,但不包括 last 指向的元素。这个构造函数可以用于复制任何其他容器(如 listdeque、甚至是另一个 vector)中的元素。分配器 alloc 是可选的

  4. Copy constructor (copy (4)):

    vector (const vector& x);
    

    这是 std::vector 的拷贝构造函数。它创建了一个新的 vector 实例

简单示例:

vector <int> v1;
vector <int> v2(10, 1);
vector <int> v3(v2);
for (auto s : v2)
{cout << s << " ";
}
cout << endl;
for (auto s2 : v3)
{cout << s2 << " ";
}
cout << endl;

这里遍历与string类相似,后面我们再次讲解,结果如下:
在这里插入图片描述
🔥operator=

在这里插入图片描述

这个赋值重载就十分简单了

2.2遍历vector

🔥operator[ ]

vector <int> v1(10,1);for (size_t i=0;i<v1.size();i++)
{cout << v1[i] << " ";
}
cout << endl;

🔥迭代器iterator

在这里插入图片描述

vector <int> v1(10,1);
vector<int>::iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;

在这里插入图片描述
剩余的六种与上面的用法类似,我们不做过多讲解

2.3对容量操作

🔥size()

获取数据个数,与string类相似

🔥capacity()

获取容量大小

我们可以看一下vector的扩容机制:

size_t sz;
vector<int> v;
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}
}

结果如下:

making v grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141

vs下使用的STL基本是按照1.5倍方式扩容

g++运行结果:linux下使用的STL基本是按照2倍方式扩容:

making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128

🔥reserve
在这里插入图片描述
用来预先开辟容量大小,来减少扩容次数:

vector<int> v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}
}

测试结果:
在这里插入图片描述
🔥resize

resize用来改变vector的size

在这里插入图片描述

  • 如果 n 小于当前容器size,则内容将减少到其前 n 个元素,删除超出(并销毁它们)的元素

  • 如果 n 大于当前容器size,则通过在末尾插入所需数量的元素来扩展内容,以达到 n 的大小。如果指定了 val,则新元素将初始化为 val 的副本,否则,它们将进行值初始化。

  • 如果 n 也大于当前容器容量,则会自动重新分配分配的存储空间

vector<int> a;
a.resize(10, 1);
for (auto e : a)
{cout << e << " ";
}
cout << endl;

在这里插入图片描述
reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题

resize在开空间的同时还会进行初始化,影响size

resize不会进行缩容,如果想要缩容,我们可以调用shrink_to_fit();

2.4vector的增删查改

在这里插入图片描述
🔥push_back

在这里插入图片描述
push_back使用很简单,直接尾插一个元素即可
🔥pop_back
在这里插入图片描述
直接删除尾部元素

使用示例:

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
for (auto e : v)
{cout << e << " ";
}
cout << endl;
v.pop_back();
for (auto e : v)
{cout << e << " ";
}

在这里插入图片描述
🔥find

注意,vector库中是没有find函数的,我们这里使用的是算法库中的find,其是包含在头文件<algorithm>中的

在这里插入图片描述

这个函数是非成员函数,被用来在一个序列中查找一个特定的值。

find 函数的声明:

template <class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& val);

这个函数的参数包括:

  • firstlast输入迭代器(InputIterator),它们一起定义了一个序列的范围(即 [first, last))。这个范围包括指向 first 元素的位置直到 last 位置但不包括 last 本身find 函数在这个范围内查找 val
  • val 是要查找的值。这个值需要跟序列中元素类型兼容。find 函数会使用元素类型的 operator== 来比较每个元素是否跟 val 相等

find 函数的行为是线性搜索;它从 first 索引开始,逐个比较每个元素直到 last 索引之前,查找一个等于 val 的元素。

返回值:

  • 如果找到,find 函数返回一个迭代器,指向第一个等于 val 的元素
  • 如果在 [first, last) 范围内没有找到 val,则返回 last,表示查找失败

🔥insert

在这里插入图片描述
std::vectorinsert 方法用于在向量中的指定位置插入元素。这个方法有三种重载形式,以适应不同的插入需求:

  1. Single element (1):

    iterator insert (iterator position, const value_type& val);
    

    这个方法在向量中 position 指定的位置前插入一个 val 副本,并返回指向新插入元素的迭代器。如果 position 是向量的 end() 迭代器,则新元素被添加到向量的末尾。

    例子:

    std::vector<int> vec = {1, 2, 4, 5};
    auto it = vec.insert(vec.begin() + 2, 3);
    // 现在 vec = {1, 2, 3, 4, 5}
    
  2. Fill (2):

    void insert (iterator position, size_type n, const value_type& val);
    

    这个方法在 position 指定的位置前插入 nval 副本。它不返回任何值。

    例子:

    std::vector<int> vec = {1, 2, 6, 7};
    vec.insert(vec.begin() + 2, 3, 5);
    // 现在 vec = {1, 2, 5, 5, 5, 6, 7}
    
  3. Range (3):

    template <class InputIterator>
    void insert (iterator position, InputIterator first, InputIterator last);
    

    这个方法将位于 [first, last) 区间内的元素插入到 position 指定的位置前。这个范围包括 first,但不包括 last,即它是一个半开区间。这个方法也不返回任何值。

    例子:

    std::vector<int> vec1 = {1, 2, 9, 10};
    std::vector<int> vec2 = {3, 4, 5, 6, 7, 8};
    vec1.insert(vec1.begin() + 2, vec2.begin(), vec2.end());
    // 现在 vec1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
    

也可以在指定元素前面插入:

vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);for (auto e : v){cout << e << " ";}cout << endl;//vector<int>::iterator pos = find(v.begin(), v.end(), 3);auto pos = find(v.begin(), v.end(), 3);if (pos != v.end()){v.insert(pos, 30);}

在这里插入图片描述

🔥erase
在这里插入图片描述
这个迭代器可以删除指定位置,或者一个迭代器区间

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);v.erase(v.begin()+2);

删除了3

注意,这里insert和erase传参均为迭代器

本篇内容到此结束!感谢大家阅读!!


http://www.ppmy.cn/devtools/5924.html

相关文章

【剪映专业版】13快速为视频配好音:清晰、无噪声、对齐

视频课程&#xff1a;B站有知公开课【剪映电脑版教程】 使用场景&#xff1a;视频无声音或者视频有声音但是需要更改声音 时间指示器在哪里&#xff0c;就从哪里开始 红色按钮&#xff1a;开始录音 声音波纹&#xff1a;蓝色最佳&#xff0c;黄色或红色声音太大&#xff0c;…

精通MongoDB聚合操作API:深入探索高级技巧与实践

MongoDB 聚合操作API提供了强大的数据处理能力&#xff0c;能够对数据进行筛选、变换、分组、统计等复杂操作。本文介绍了MongoDB的基本用法和高级用法&#xff0c;高级用法涵盖了setWindowFields、merge、facet、expr、accumulator窗口函数、结果合并、多面聚合、查询表达式在…

适配器模式

适配器模式 适配器模式是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式&#xff0c;它结合了两个独立接口的功能。 适配器模式一般用于屏蔽业务逻辑与第三方服务的交互&#xff0c;或者是新老接口之间的差异。 在Dubbo中&#xff0c;所有的数据都是通过…

【R语言】概率密度图

概率密度图是用来表示连续型数据的分布情况的一种图形化方法。它通过在数据的取值范围内绘制一条曲线来描述数据的分布情况&#xff0c;曲线下的面积代表了在该范围内观察到某一数值的概率。具体来说&#xff0c;对于给定的连续型数据&#xff0c;概率密度图会使用核密度估计&a…

【Python图像处理篇】opencv中的去畸变

去畸变 opencv opencv-python光学畸变校准 使用pythonopencv进行图像的去畸变 使用pythonopencv进行图像的去畸变 关于OpenCV中的去畸变 为什么相机参数每次标定的结果都不一样&#xff08;原理分析&#xff09;

使用Docker,【快速】搭建个人博客【WordPress】

目录 1.安装Mysql&#xff0c;创建&#xff08;WordPress&#xff09;用的数据库 1.1.安装 1.2.创建数据库 2.安装Docker 3.安装WodPress&#xff08;使用Docker&#xff09; 3.1.创建文件夹 3.2.查看镜像 3.3.获取镜像 3.4.查看我的镜像 3.5.使用下载的镜像&#xf…

【图解计算机网络】从浏览器地址输入到网页显示的整个过程

从浏览器地址输入到网页显示的整个过程 整体流程DHCPhttp协议报文组装DNSTCP协议封装与TCP三次握手IP协议封装与路由表MAC地址与ARP协议交换机路由器 整体流程 从往浏览器输入一个地址到网页的显示&#xff0c;要经过很长的一个流程&#xff0c;中间涉及到计算机网络的许多知识…

一些常见的 MyBatis 面试题

MyBatis 的优点包括&#xff1a; 灵活性&#xff1a;可以通过 XML 或注解来配置 SQL 语句&#xff0c;提供了很大的灵活性。可读性高&#xff1a;将 SQL 语句与业务代码分离&#xff0c;使代码更易于理解和维护。可扩展性好&#xff1a;可以方便地添加或修改 SQL 语句&#xf…