【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

devtools/2024/11/9 16:45:46/

文章目录

前言

背景介绍

初始算法

优化算法

分析和应用

总结


前言

        见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》

        见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》

背景介绍

        在一个嵌入式软件开发项目中,需要开发一个数据处理算法,功能是求解一个动态变化数组的平均值、极值和极值位号,并且具备动态剔除个别元素(元素序列不变)的功能。示例如下:

数组:2、4、6、8、10

剔除:第1个元素、第3个元素

求均值:(4 + 8 + 10)/ 3 = 7.3

求最小值:4

求最小值位号:2

求最大值:10

求最大值位号:5

初始算法

        一开始算法开发的思路非常简单,就是根据上述示例把求解过程拆分成两步,第一步构建剔除特定元素后的新数组,第二步分别求解统计结果,示例如下:

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T Array_min[5];real_T ArrayIndex;int32_T b_idx;int32_T b_k;int32_T e_k;int32_T i;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 255.0;Array_min[2] = 255.0;untitled_Y.Out2 = 255.0;b_idx = 1;for (b_k = 1; b_k + 1 < 6; b_k++) {if (untitled_Y.Out2 > Array_min[b_k]) {untitled_Y.Out2 = Array_min[b_k];b_idx = b_k + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = untitled_ConstP.Constant_Value[i];}Array_min[0] = 0.0;Array_min[2] = 0.0;untitled_Y.Out4 = 0.0;b_k = 1;for (i = 1; i + 1 < 6; i++) {if (untitled_Y.Out4 < Array_min[i]) {untitled_Y.Out4 = Array_min[i];b_k = i + 1;}}for (i = 0; i < 5; i++) {Array_min[i] = 0.0;}ArrayIndex = 0.0;for (i = 0; i < 5; i++) {if ((i + 1 != 1) && (i + 1 != 3)) {ArrayIndex++;Array_min[(int32_T)ArrayIndex - 1] = untitled_ConstP.Constant_Value[i];}}if (1.0 > ArrayIndex) {i = -1;} else {i = (int32_T)ArrayIndex - 1;}if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else if ((int8_T)(i + 1) == 0) {ArrayIndex = 0.0;} else {ArrayIndex = Array_min[0];for (e_k = 2; e_k <= (int8_T)(i + 1); e_k++) {ArrayIndex += Array_min[e_k - 1];}}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = ArrayIndex / (real_T)(int8_T)(i + 1);/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = b_idx;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = b_k;
}/* Model initialize function */
void untitled_initialize(void)
{/* (no initialization code required) */
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        上述代码仿真运行没有什么问题,从结果来看是符合功能需求的,示例如下:

        分析上述代码会发现构建新数组时存在一些问题。如果数组中出现大于255的值,或者小于0的负数时,算法就需要重新匹配。如果数组的Size大于5,或者剔除的个数大于2,算法也需要重新匹配。这种繁复的工作,是我们不希望看到的。

优化算法

        针对上述问题的分析和研究,发现Matlab官方提供了一个现成的函数功能,可用于剔除特定元素的数据统计算法,能让我们简化构建新数组的工作,也就免去繁复匹配算法的问题,示例如下:

        Tips:因为有NaN的存在,数组的数据类型如果不是double可能会出问题。例如NaN赋给uint8的数组是,对应元素就会变成0,再后续的求解函数中是按0对待的。

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;/* Model step function */
void untitled_step(void)
{real_T data[5];real_T y;int32_T c_k;int32_T i;int32_T k;boolean_T exitg1;/* MATLAB Function: '<Root>/MATLAB Function' incorporates:*  Constant: '<Root>/Constant'*/for (i = 0; i < 5; i++) {data[i] = untitled_ConstP.Constant_Value[i];}data[0] = (rtNaN);data[2] = (rtNaN);i = 0;k = 2;exitg1 = false;while ((!exitg1) && (k < 6)) {if (!rtIsNaN(data[k - 1])) {i = k;exitg1 = true;} else {k++;}}if (i == 0) {/* Outport: '<Root>/Out2' */untitled_Y.Out2 = (rtNaN);i = 1;} else {untitled_Y.Out2 = data[i - 1];for (k = i; k < 5; k++) {if (untitled_Y.Out2 > data[k]) {untitled_Y.Out2 = data[k];i = k + 1;}}}k = 0;c_k = 2;exitg1 = false;while ((!exitg1) && (c_k < 6)) {if (!rtIsNaN(data[c_k - 1])) {k = c_k;exitg1 = true;} else {c_k++;}}if (k == 0) {/* Outport: '<Root>/Out4' */untitled_Y.Out4 = (rtNaN);k = 1;} else {untitled_Y.Out4 = data[k - 1];for (c_k = k; c_k < 5; c_k++) {if (untitled_Y.Out4 < data[c_k]) {untitled_Y.Out4 = data[c_k];k = c_k + 1;}}}y = 0.0;c_k = 0;if (!rtIsNaN(data[1])) {y = data[1];c_k = 1;}if (!rtIsNaN(data[3])) {y += data[3];c_k++;}if (!rtIsNaN(data[4])) {y += data[4];c_k++;}/* Outport: '<Root>/Out1' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out1 = y / (real_T)c_k;/* Outport: '<Root>/Out3' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out3 = i;/* Outport: '<Root>/Out5' incorporates:*  MATLAB Function: '<Root>/MATLAB Function'*/untitled_Y.Out5 = k;
}/* Model initialize function */
void untitled_initialize(void)
{/* Registration code *//* initialize non-finites */rt_InitInfAndNaN(sizeof(real_T));
}/* Model terminate function */
void untitled_terminate(void)
{/* (no terminate code required) */
}

        Tips:从生成的C代码来看,底层逻辑的实现方法与前一种是类似的

        上述代码仿真运行也没有问题,结果符合需求,示例如下:

        分析上述算法的特点,不仅实现了项目中的需求,同时也利用NaNFlag为数据处理算法进行了降阶

分析和应用

        利用NaNFlag开发数据处理算法时,需要注意如下几点:

        1、两种算法生成的代码,底层逻辑都一样,但是是开发复杂度软件成熟度上差别好多,前者更适合用于逻辑探索和思维训练,后者跟适合于工程应用

        2、两种算法的开发自由度不同,可裁剪和压缩负载的空间也不同。前者可以根据实际应用裁剪出自己需要的数组大小,选取自己够用的数据类型,能更极致压缩算法对内存资源算力资源的消耗。后者是把一部分算法设计工作交给代码生成工具去做了,开发者就没有这么大的灵活度了。前者更适用于处理器资源有限的专用嵌入式项目,后者更实用于模块化平台化开发的项目。

总结

        以上就是本人在嵌入式软件开发中设计数据处理算法时,一些个人理解和分析的总结,首先介绍了它的背景情况,然后展示它的初始设计和优化设计,最后分析了利用NaNFlag开发数据处理算法的注意事项和应用场景。

        后续还会分享另外几个最近总结的软件优化知识点,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明:原创文章,转载和引用请注明出处和链接,侵权必究


http://www.ppmy.cn/devtools/48571.html

相关文章

发布你的npm插件包:一步步指南

引言 在JavaScript和Node.js的世界中&#xff0c;npm&#xff08;Node Package Manager&#xff09;是包管理和分发的中心枢纽。成千上万的开发者使用npm来共享代码和构建应用程序。如果你开发了一个有用的插件或库&#xff0c;你可能想把它发布到npm上&#xff0c;以便其他人…

百度网盘限速解决办法

文章目录 开启P2P下载30秒会员下载体验一次性高速下载服务导入“百度网盘青春版”后下载注册新号参与活动 获取下载直链后使用磁力链接下载不是办法的办法无效、已失效方法免限速客户端、老版本客户端、永久会员下载体验试用客户端&#xff0c;或类似脚本、工具获取下载直链后多…

字节一面(年前)测开—飞书

字节一面&#xff08;年前&#xff09;测开—飞书 2.1 没手撕代码&#xff01; 就问问项目&#xff0c;很轻松前面 后续问了最基础的八股文&#xff1a; http与https 请谈谈你对持续集成和持续交付的理解&#xff0c;以及如何在测试过程中应用这些概念&#xff1f; 你如何设计…

代码随想录算法训练营第七天| 454.四数相加II |383. 赎金信 |15. 三数之和 |18. 四数之和

454.四数相加II 文档讲解&#xff1a;代码随想录 视频讲解&#xff1a;学透哈希表&#xff0c;map使用有技巧&#xff01;LeetCode&#xff1a;454.四数相加II_哔哩哔哩_bilibili 1. 暴力算法。 2. 先两个循环将和放到map中&#xff0c;再两个循环求和查询map&#xff0c;计算…

JWT工具【工具类】

一、JWT JSON Web Token (JWT)是一个开放标准&#xff08;RFC 7519&#xff09;&#xff0c;定义了一种紧凑且自包含的方式&#xff0c;以JSON对象的形式在各方之间安全地传输信息。这种信息可以被验证和信任&#xff0c;因为它是数字签名的。具体来说&#xff0c;JWT是一种用…

Photoshop 2024无故卡死

来源 还没怎么用呢&#xff0c;就直接卡死不能动了 虽然是学习版 但是想必不会是软件的问题&#xff0c;毕竟Adobe出品的软件应该是还是有点质量的。 解决 安装国际软件的必备技能&#xff0c;目录必须是全英文√保证磁盘空间还有相当部分的剩余√保证电脑性能完全没问题√保…

IPv6 ND 协议功能概述

ND 协议功能概述 ND&#xff08;Neighbor Discovery&#xff0c;邻居发现&#xff09;协议是 IPv6 的一个关键协议&#xff0c;它综合了 IPv4 中的 ARP&#xff0c;ICMP 路由发现和 ICMP 重定向等协议&#xff0c;并对它们做了改进。 作为 IPv6 的基础性协议&#xff0c;ND 协…

CentOS安装Node.js以及JSDOM跳坑记

笔者在一台 CentOS 7.9 的服务器上使用常规的安装命令&#xff1a;sudo yum install node 来安装 Node.js&#xff0c;到最后系统提示&#xff1a; Error: Package: 2:nodejs-20.14.0-1nodesource.x86_64 (nodesource-nodejs) Requires: libstdc.so.6(GLIBCXX_3.4.20)(64bit) …