模型智能体开发之metagpt-单智能体实践

devtools/2024/12/22 13:45:00/

需求分析

  1. 根据诉求完成函数代码的编写,并实现测试case,输出代码

代码实现

定义写代码的action

  1. action是动作的逻辑抽象,通过将预设的prompt传入llm,来获取输出,并对输出进行格式化

  2. 具体的实现如下

    1. 定义prompt模版

      1. prompt是传给llm的入参,所以llm对prompt的需求解析越准确,那么llm的输出就会越符合我们的诉求
      2. 如何抽象出最合适的prompt模版
      python">PROMPT_TEMPLATE = """Write a python function that can {instruction} and provide two runnnable test cases.Return ```python your_code_here ```with NO other texts,your code:"""
      
    2. 调用llm生成代码

      1. 通过传入的instruction参数来格式化llm入参,之后通过aask调用llm进行输出。因为llm的输出是并不一定会符合我们的诉求,所以需要按照需求对output进行格式化
      python">async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = SimpleWriteCode.parse_code(rsp)return code_text  
      
    3. 对llm output进行格式化

      1. 正则表达式提取其中的code部分,llm在返回给我们代码时通常带有一些格式化标识,而这些格式化标识往往是我们所不需要的
      2. 格式方法:
       @staticmethoddef parse_code(rsp):pattern = r'```python(.*)```'match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_text
      
  3. 完整代码

    python">import asyncio
    import re
    import subprocessimport firefrom metagpt.actions import Action
    from metagpt.logs import logger
    from metagpt.roles.role import Role, RoleReactMode
    from metagpt.schema import Messageclass SimpleWriteCode(Action):PROMPT_TEMPLATE: str = """Write a python function that can {instruction} and provide two runnnable test cases.Return ```python your_code_here ```with NO other texts,your code:"""name: str = "SimpleWriteCode"async def run(self, instruction: str):prompt = self.PROMPT_TEMPLATE.format(instruction=instruction)rsp = await self._aask(prompt)code_text = SimpleWriteCode.parse_code(rsp)return code_text@staticmethoddef parse_code(rsp):pattern = r"```python(.*)```"match = re.search(pattern, rsp, re.DOTALL)code_text = match.group(1) if match else rspreturn code_text
    

创建一个role

  1. 初始化上下文

    python">class SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteCode])
    
    1. 可以看到创建了一个名为SimpleCoder的类,继承了Role,标明当前类是一个role的定位
    2. 其中name指定了当前role的名称
    3. 其中name指定了当前role的类型
    4. 然后我们重写了__init__方法,
    5. 绑定要执行的action是SimpleWriteCode,这个Action 能根据我们的需求生成我们期望的代码,定义的行动SimpleWriteCode会被加入到代办self._rc.todo中,
  2. 定义执行规则

    python">async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo  # todo will be SimpleWriteCode()msg = self.get_memories(k=1)[0]  # find the most recent messagescode_text = await todo.run(msg.content)msg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msg 
    
    1. 重写_act,编写智能体具体的行动逻辑
    2. self.rc.todo:待办事项
    3. self.get_memories(k=1)[0]:获取最新的一条memory,即本次case里面的用户下达的指令
      1. 在本次的case里面,当用户输出instruction的时候,role需要把instruction传递给action,这里就涉及到了user如何传递消息给agent的部分,是通过memory来传递的
      2. memory作为agent的记忆合集,当role在进行初始化的时候,role就会初始化一个memory对象来作为self._rc.memory属性,在之后的_observe中存储每一个message,以便后续的检索,所以也可以理解role的memory就是一个含有message的list
      3. 当需要获取memory(llm的对话context)的时候,就可以使用get_memories(self, k=0) -> list[Message] 方法
    4. todo.run(msg.content):使用待办事项来处理最新一条memory
    5. Message:作为metagpt里面统一的消息处理格式
  3. 完整代码

    python">    class SimpleCoder(Role):name: str = "Alice"profile: str = "SimpleCoder"def __init__(self, **kwargs):super().__init__(**kwargs)self.set_actions([SimpleWriteCode])async def _act(self) -> Message:logger.info(f"{self._setting}: to do {self.rc.todo}({self.rc.todo.name})")todo = self.rc.todo  # todo will be SimpleWriteCode()msg = self.get_memories(k=1)[0]  # find the most recent messagescode_text = await todo.run(msg.content)msg = Message(content=code_text, role=self.profile, cause_by=type(todo))return msg```
  4. 测试demo

    1. 代码

      python">async def main():msg = "write a function that calculates the sum of a list"role = SimpleCoder()logger.info(msg)result = await role.run(msg)logger.info(result)asyncio.run(main())
      
    2. 运行

      1. 如下图,role alice 关联到了action,并且action调用了llm,获取到的llm输出是一条代码。注意,代码格式有python格式化标识,所以在代码实现层面我们通过parse_code方法去掉了python的格式化标识。
      2. llm输出分为两部分,一部分是方法,另外一部分是测试case
        在这里插入图片描述

demo如果想正常运行的话,需要调用llm的key,环境配置可以参照 metagpt环境配置参考


http://www.ppmy.cn/devtools/27933.html

相关文章

ROS2专栏(三) | 理解ROS2的动作

​ 1. 创建一个动作 目标: 在ROS 2软件包中定义一个动作。 1.1 新建包 设置一个 workspace 并创建一个名为 action_tutorials_interfaces 的包: mkdir -p ros2_ws/src #you can reuse existing workspace with this naming convention cd ros2_ws/s…

蓝桥杯2022年第十三届决赛真题-最大数字

知识点: double -------(max)10的308次幂 long long ---------(max)10的18次幂 过 96% 的方法 贪心思想:根据数据范围,很容易想到应该用for遍历每一位,复杂度是O(1)。从前往后看每一位,比较通过到达9和通过-到达9的个…

【ARM 常见汇编指令学习 6.1 - armv8 乘加指令 madd详细介绍】

请阅读【嵌入式开发学习必备专栏 】 文章目录 armv8 乘加指令 madd使用场景示例注意事项 armv8 乘加指令 madd 在ARMv8架构中,madd指令是一种乘加指令,用于执行两个数的乘法操作,并将结果与第三个数相加。madd指令是“Multiply-Add”的缩写&…

Linux内核常用调优参数

Linux内核常用调优参数 vi /etc/sysctl.conf net.core.rmem_default 256960 net.core.rmem_max 513920 net.core.wmem_default 256960 net.core.wmem_max 513920 net.core.netdev_max_backlog 2000 net.core.somaxconn 2048 net.core.optmem_max 81920 net.ipv4.tcp_m…

人脸识别概念解析

目录 1. 概述 2. 人脸检测 3. 人脸跟踪 4. 质量评价 5. 活体检测 6. 特征提取 7. 人脸验证 8. 人脸辨识 1. 概述 人脸识别在我们的生活中随处可见,例如在大楼门禁系统中,它取代了传统的门禁卡或密码,提高了进出的便捷性和安全性。在商…

如何从 iPhone 恢复已删除或丢失的联系人?

不小心删除了您的 iPhone 联系人?不用担心。我们将向您展示如何从 iPhone或 iPad恢复已删除或丢失的联系人。当您从 iPhone 中删除联系人时,您可能认为无法将其恢复。但事实是,您可以从 iPhone 或 iPad 恢复已删除的联系人,因为它…

github托管静态页面

免费在线上空间,不用简直就是浪费,关键还不限流量赶紧去折腾一下 这是搭建的GitHub托管网页,由于是GitHub的服务器,国内访问会非常!慢 下载 Watt Toolkit 这里我建议下载一个软件 Watt Toolkit 它是一个开源跨…

ctfshow web78 获取flag(用老版的火狐浏览器)

题&#xff1a; 第一种&#xff1a;利用input伪协议 ,获取到flag ?filephp://input POST data <?php system(tac ls) ?> 第二种&#xff1a;利用flter协议,获取到flag https://21d9e58a-c0fd-47ea-a9c4-d875100f2fdb.challenge.ctf.show/?filephp://filter/readcon…