yolov8目标检测 部署瑞芯微rk3588记录

devtools/2024/12/22 16:03:47/
1. 前置条件

本地电脑系统,ubuntu20.04

训练代码:

训练代码下载的ultralytics官方代码

SHA:6a2fddfb46aea45dd26cb060157d22cf14cd8c64

训练代码仅做数据修改,类别修改,代码结构未做任何修改

需要准备的代码:

pt转onnx :

git clone https://github.com/airockchip/ultralytics_yolov8.git
cd ultralytics_yolov8
git checkout 5b7ddd8f821c8f6edb389aa30cfbc88bd903867b

onnx转rknn:

#环境所需要的包
https://github.com/airockchip/rknn-toolkit2/releases/tag/v1.6.0#转换所需要的代码
https://github.com/airockchip/rknn_model_zoo/releases/tag/v2.0.0

rknn仿真和板卡上所需要的代码

#和onnx转rknn是一个代码
https://github.com/airockchip/rknn_model_zoo/releases/tag/v2.0.0
2. pt转onnx

这里参照这位大佬的方案,rk3588's yolov8 model conversion from pt to rknn | Memories,这里只取他pt转onnx的部分,如下图部分

步骤跟他的一模一样,使用他制作的镜像环境,我本地试过,不使用他的环境也行,可以使用训练代码的环境进行导出,我本地用conda创建的一个python=3.9的环境,安装的最新的pytorch和ultralytics。

使用他给的链接拉取的转换代码后,需要修改的地方只有一处,如图所示,改成自己模型的名字,mode:export

然后将自己的pt模型放到下载的ultralytics_yolov8根目录下,如图所示

按照他的教程执行,主要这一句export 一定要执行!!!,执行完后会在pt文件同级目录下会生成的onnx文件,如上图所示,我执行完之后,生成了drone.onnx

3. onnx转rknn
3.1. rknn环境安装
  • 我的本地电脑系统为ubuntu20.04,下载rknn_toolkit2的1.6.0版本(这里和板卡上使用的toolkit2-2.0.0 版本不一致,但是可以正常推理,一致的版本我还没试过),下载地址

Release v1.6.0 · airockchip/rknn-toolkit2 · GitHub

  • rknn环境安装
#下载toolkit2代码后解压,使用conda创建一个python=3.9的环境
conda create -n npu-test python=3.9#激活环境,安装必要的库
conda activate npu-test#进入到1.6版本的rknn-toolkit2文件夹下
cd rknn-toolkits-1.6.0/rknn-toolkits/packages#依赖库安装
pip install -r requirements_cp39-1.6.0.txt -i https://pypi.tuna.tsinghua.edu.cn/simple#这里使用清华源安装会比较快,但是一般情况会报一个错误,有一个库下载不下来,如下图

继续在这里输入以下内容进行安装,tf-es那一坨从终端里面进行复制,避免敲错了

pip install tf-estimator-nightly==2.8.0.dev2021122109 -i https://pypi.org/simple

执行完后,如图所示,tf-es就安装成功了

紧接着再继续安装requirements中的剩余的依赖库,重新执行

pip install -r requirements_cp39-1.6.0.txt -i https://pypi.tuna.tsinghua.edu.cn./simple

所有库都安装好以后,开始安装rknn包,进入到下载的1.6.0版本的rknn-toolkit2文件夹下

cd rknn-toolkits-1.6.0/rknn-toolkits/packagespip install rknn_(按Tab自动弹出来)-cp39(按Tab补充完整) .whl

安装完成后,如下图所示,则表示rknn环境已经安装好了

3.2. rknn模型转换
  • 下载rknn_model_zoo,我使用的是2.0.0的版本

Release v2.0.0: Support RK3576 and RKNPU1 · airockchip/rknn_model_zoo · GitHub

  • 下载完成后解压,进入目录rknn_model_zoo/examples/yolov8/model,修改coco_80_labels_list.txt内容,修改为自己模型对应的类别

因为我只有2类别,人和车,所以我把文件修改为以下内容 (一定要和训练的时候训练集名字对应)

  • 开始转换

激活rknn虚拟环境

conda activate npu-test

进入到下载的rknn_model_zoo中yolov8的示例中

cd rknn_model_zoo/examples/yolov8/python

如图所示

此时拷贝第2步中转换的onnx模型路径,我是把转换得到的onnx拷贝到该路径下的,

rknn_model_zoo/examples/yolov8/model

然后执行以下命令开始转换,

python convert.py ../model/drone.onnx rk3588

如下图开始转换

等待片刻,导出完成,如图所示

转换完成后会在onnx文件同目录下得到一个名为yolov8.rknn模型

4. 板卡环境配置
3.1 rk3588板卡环境

rk3588的系统为Linux系统,版本为 ubuntu20.04

3.2 npu2 驱动版本

连接上板卡输入 dmesg | grep -i rknpu,如图所示,npu驱动版本为 0.8.8

在rknn_toolkit2 doc的官方文档中01_Rockchip_RKNPU_Quick_Start_RKNN_SDK_V2.0.0beta0_CN.pdf

中建议驱动版本大于 0.9.2,但是由于没找到对应的驱动版本,手里的版本驱动只有 0.7.2和 0.8.8两个版本, 都测试过,均可完成正常推理。

3.3 npu环境

进入板卡系统,输入以下指令

查询 rknn server版本

strings /usr/bin/rknn_server | grep -i "rknn_server version"

查询 librknnrt.so库版本

string /usr/lib/librknnrt.so | grep -i "librknnrt version"

注意:二者的版本必须一致

若输出不一致,需要做以下处理,下载rknn_toolkit2,我使用的是rknn_toolkit2-v2.0.0版本

Release v2.0.0-beta0: Update RK3562/RK3566/RK3568/RK3576/RK3588/RV1103/RV1106 NPU SDK to V2… · airockchip/rknn-toolkit2 · GitHub

  • 将下载下来的文件拷贝到板卡上,将下面对应文件拷贝对板卡的对应位置
sudo cp rknn-toolkit2/rknpu/runtime/Linux/rknn_server/aarch64/usr/bin/* /usr/bin/
sudo cp rknn-toolkit2/rknpu/runtime/Linux/librnkk_api/aarch64//* /usr/lib/

  • 给rknn_server赋予可执行权限
sudo chmod +x /usr/bin/rknn_server
sudo chmod +x /usr/bin/start_rknn.sh
sudo chmod +x /usr/bin/restart_rknn.sh
  • 紧接着重启服务
cd /usr/bin
./restart_rknn.sh

如图所示,打印出版本后,就可以用ctrl+c关闭掉

若开始使用strings查询版本不一致,或者没有打印或者版本过低,此时再查询板卡npu版本,二者版本一致才行

5. adb仿真

adb仿真就是使用在电脑上配置上rk环境,然后使用typeC连接电脑和板卡,使用电脑环境仿真rk板卡的推理,目的是验证rknn模型是否正常,如果能正常推理,说明rknn的整个转换过程是正常的,否则就是找rknn转换问题了,如果上述步骤都是正常进行的,这adb仿真可以略过

心得:踩坑半个月,一直没找到无法正常推理的原因,也不知道是模型转换问题还是c++代码问题,所以找到rknn_model_zoo说明文档,尝试使用adb连接仿真,最后发现官方download下来的onnx转换rknn后可以推理,但是自己的模型转换rknn就不行,才发现是自己转换的onnx模型不对,这样才一步一步找原因,最后才找到正确的转换方法。

  • 本地电脑安装adb
sudo apt install adb
  • 查询板卡device id
adb devices

执行完后,如果连接正常,如下图会打印设备的device id,复制该id,下面会使用

adb仿真还是使用第3步骤中的rknn_model_zoo,进入目录rknn_model_zoo/examples/yolov8/python,修改yolov8.py代码,CLASSES修改为自己模型的类别, coco_id_list修改为自己模型对应的序号,我这里就是二分类,我的修改内容如图所示

搜索main函数,还需要修改以下内容

--model_path那一行 default修改为 自己导出的rknn模型的绝对路径

--target那一行 default修改为 rk588

--device_id那一行, default修改为上一步中复制下来的device id

--img_show那一行, default修改为 True, 仿真时候会显示仿真的推理结果

将待测试的图片放到py文件的上一级的model路径下,如图所示

然后在电脑端,conda进入第3步创建rknn虚拟环境中,执行python yolov8.py,如果顺利的话,执行完就会在电脑上显示推理结果,能正常推理的话,表示rknn模型无误,可以进行下一步的c++板卡部署。

注意:如果这里报错了,进入板卡终端,进入/usr/bin目录下,执行./restart_rknn.sh 不关闭,然后再在电脑端进入rknn虚拟环境,再执行python yolov8.py进行仿真推理

6. 板卡c++部署
  • 修改源码

现将第3步中用到的rknn_model_zoo推送到板卡中,修改rknn_model_zoo中关于yolov8的代码,修改代码的路径为: /rknn_model_zoo/examples/yolov8/cpp/postprocess.h

第12行代码,#define OBJ_CLASS_NUM 修改为自己需要检测的目标类别数量

我自己需要检测两类,所以这里我修改为 #define OBJ_CLASS_NUM 2,如图所示

  • 开始编译

进入rknn_model_zoo根目录下,执行以下命令开始编译

先给脚本权限

chmod 777 build-linux.sh

再编译

./build-linux.sh -t rk3588 -a aarch64 -d yolov8
  • 编译完成后会在跟目录下生成install文件夹

一直按Tab直到进入最里面文件夹,我本地的路径为:

rknn_model_zoo/install/rk3588_linux_aarch64/rknn_yolov8_demo

该路径下,有一个可执行文件rknn_yolov8_demo以及一个model和一个lib文件夹内,修改model下的coco文本文件,修改为自己需要检测目标类别

  • 开始推理
./rknn_yolov8_demo [rknn路径] [图片路径]

执行完成后,会在rknn_yolov8_demo下生成out.png文件,将该图片导出到电脑可以验证推理是否正确


http://www.ppmy.cn/devtools/2211.html

相关文章

视频批量高效剪辑,支持将视频文件转换为音频文件,轻松掌握视频格式

在数字化时代,视频内容日益丰富,管理和编辑这些视频变得愈发重要。然而,传统的视频剪辑软件往往操作复杂,难以满足高效批量处理的需求。现在,一款全新的视频批量剪辑神器应运而生,它支持将视频文件一键转换…

怎么使用JMeter进行性能测试?

一、简介 JMeter是Apache软件基金会下的一款开源的性能测试工具,完全由Java开发。它专注于对我们应用程序进行负载测试和性能测量,最初设计用于web应用程序,现在已经扩展到其他测试功能,比如:FTP、Database和LDAP等。…

如何用Redis高效实现12306的复杂售票业务

12306的售票业务是一个复杂的系统,需要考虑高并发、高可用、数据一致性等问题。使用Redis作为缓存和持久化存储,可以提高系统的性能和可扩展性,以下是一些可能的实现方式: 1 票源信息缓存:将票源信息(如车次…

Pytest精通指南(14)Parametrize之indirect(间接参数)

文章目录 官方概念概念分析官方示例示例分析验证indirect为True但不指定fixture验证indirect为True但不存在fixture 官方概念 概念分析 在pytest的pytest.mark.parametrize装饰器中,indirect参数用于指示是否应该从fixtures中解析参数值,而不是直接使用提…

C++初阶学习第一弹——C++入门(上)

前言: 很高兴,从今天开始,我们就要步入C的学习了,在这之前我们已经对C语言有了不错的了解,对数据结构也有了一些自己的认识,今天开始,我们就进入这个新的主题的学习——C 目录 一、C的发展即其特…

基于弹簧鞘复合纱和迁移学习算法的可穿戴人体重构和智能试衣系统

研究背景 在信息时代和元宇宙的背景下,虚拟服装设计对满足服装行业的个性化需求至关重要。与传统方法不同,虚拟试衣节省时间、方便客户,并提供多样化的款式。准确得测量人体围度并重构出人体的模型是虚拟试衣的关键。为了实现动态人体重构&a…

序列化和反序列化

一 概念理解 先前已经可以利用sock套接字通信了,但是数据如何处理就是我们应用层协议的内容了,之前都是发送一些字符串,但是实际上我们发送的消息可能是个结构化的数据。 那我们能不能直接发结构体呢? 可以但是会浪费空间,你想想…

opencv+python(顶帽+黑帽)

1、顶帽运算:去除目标图像外的噪声,原图-开运算; morphologyEx(src, op, # 为形态变换的类型 MORPH_TOPHAT:顶帽,又称礼帽 kernel, dst: , anc…