2Dslam前端分类

devtools/2025/3/25 22:46:38/

文章目录

      • 扫描匹配
      • ICP
        • 核心思想
        • 具体流程:
      • 似然场
        • 核心思想:
        • 基本原理:
        • 具体流程:

扫描匹配

  • Scan-to-Scan(扫描到扫描)匹配
    扫描到扫描匹配是最基本的扫描匹配方法,通过比较当前扫描数据与上一扫描数据之间的差异来估计机器人的位姿变化。常见的算法包括迭代最近点算法(ICP, Iterative Closest Point)和PL-ICP(Point-to-Line ICP),其中ICP适用于点云数据的精确匹配,而PL-ICP则更适合处理线性特征较多的场景。

  • Scan-to-Map(扫描到地图)匹配。
    扫描到地图匹配是另一种常用方法,通过将当前扫描数据与已构建的地图进行比较来估计位姿。这种方法可以有效限制累积误差,避免局部极值问题。例如,Cartographer算法采用CSM(Correlation Scan Matching)结合梯度优化技术,通过暴力搜索找到最优解。

ICP

ICP通过迭代优化两个点云之间的相对位姿,以实现精确的匹配和定位。

核心思想

通过最小化两个点云之间的距离来估计它们之间的变换矩阵(包括旋转和平移)。

具体流程:
  1. 初始化:选择一个初始的位姿估计(通常为零变换)。
  2. 最近邻匹配:在目标点云中找到与源点云最近的点对。
  3. 计算变换矩阵:基于匹配点对,计算旋转和平移矩阵,使得两个点云之间的距离最小化。
  4. 迭代优化:将新的变换矩阵应用到源点云,并重复步骤2和3,直到满足收敛条件(如误差阈值或最大迭代次数)。

似然场

似然场扫描匹配是一种用于通过激光雷达数据实现机器人位姿的估计和地图的构建。

核心思想:

利用概率模型来描述当前时刻激光雷达数据与地图之间的相似性,并通过优化过程找到最佳的位姿。

基本原理:

似然场扫描匹配方法基于概率模型,将激光雷达的扫描数据与地图中的栅格或点云进行比较,从而计算出当前位姿的可能性。

具体流程:
  1. 构建似然场:将地图划分为多个栅格或点云单元,每个单元代表一个可能的位置。对于每个单元,根据当前扫描数据与地图数据的匹配程度计算其概率值(如占据概率)。
  2. 扫描匹配:通过比较当前扫描数据与地图数据,计算当前位姿的似然值。例如,通过高斯牛顿法或Levenberg-Marquardt法优化位姿,使得似然值最大化。
  3. 更新位姿:根据优化结果更新机器人的位姿,并将新的位姿信息融入地图中

http://www.ppmy.cn/devtools/170644.html

相关文章

Linux:基础IO---文件描述符

文章目录 1. 前言1.1 C语言文件知识回顾 2. 文件2.1 文件基础知识 3. 被打开的文件3.1 以C语言为主,先回忆一下C文件接口3.2 过渡到系统,认识文件系统调用3.3 访问文件的本质3.4 重定向&&缓冲区 序:在深入了解了进程的内容后&#xf…

开源模型应用落地-shieldgemma-2-4b-it模型小试-多模态内容安全检测(一)

一、前言 在人工智能迅速发展的过程中,内容安全成为AI应用中的一个重要挑战。谷歌团队于2025年3月推出了一款名为ShieldGemma-2-4B-IT的模型,它以创新的多模态安全检测能力,为行业树立了新的开源责任AI标准。 与早期的仅支持文本审核的版本相比,ShieldGemma-2-4B-IT在谷歌的…

数据结构之链表(双链表)

目录 一、双向带头循环链表 概念 二、哨兵位的头节点 优点: 头节点的初始化 三、带头双向链表的实现 1.双链表的销毁 2.双链表的打印 3.双链表的尾插和头插 尾插: 头插: 4.双链表的尾删和头删 尾删: 头删: …

KUKA机器人信息编程程序

KUKA机器人在 KUKA.HMI示教器的信息窗口中对每一条信息提示均显示一个相应的图标。 图标与信息提示类型固定对应,无法由程序员改变。有如下类型的信息提示,可对他们进行编程。 一、测试程序如下: 1、先声明所需的变量 DEF M1 ( ) DECL KRLMSG_T my1,my2,…

封装一个分割线组件

最终样式 Vue2代码 <template><div class"sep-line"><div class"sep-label"><span class"sep-box-text"><slot>{{ title }}</slot> <!-- 默认插槽内容&#xff0c;如果没有传递内容则使用title -->&…

浅谈ai工程落地 - 蒸馏 vs 剪枝 vs 量化

前言 曾在游戏世界挥洒创意&#xff0c;也曾在前端和后端的浪潮间穿梭&#xff0c;如今&#xff0c;而立的我仰望AI的璀璨星空&#xff0c;心潮澎湃&#xff0c;步履不停&#xff01;愿你我皆乘风破浪&#xff0c;逐梦星辰&#xff01; 一句话总结为什么量化目前完胜 ✅ 蒸馏的…

全局上下文网络GCNet:创新架构提升视觉识别性能

摘要&#xff1a;本文介绍了全局上下文网络&#xff08;GCNet&#xff09;&#xff0c;通过深入分析非局部网络&#xff08;NLNet&#xff09;&#xff0c;发现其在重要视觉识别任务中学习的全局上下文与查询位置无关。基于此&#xff0c;提出简化的非局部模块、全局上下文建模…

计算机网络入门:物理层与数据链路层详解

&#x1f310; &#xff08;专业解析 中学生也能懂&#xff01;&#xff09; &#x1f4d6; 前言 计算机网络就像数字世界的“高速公路系统”&#xff0c;而物理层和数据链路层是这条公路的基石。本文用 专业视角 和 生活化比喻 &#xff0c;带你轻松理解这两层的核心原理&a…