Android开源库——RxJava和RxAndroid

devtools/2025/3/18 18:53:58/

RxJava和RxAndroid是什么?

RxJava是基于JVM的响应式扩展,用于编写异步代码

RxAndroid是关于Android的RxJava绑定

RxJava和RxAndroid使用

依赖

implementation 'io.reactivex.rxjava3:rxjava:3.1.0'
implementation 'io.reactivex.rxjava3:rxandroid:3.0.2'

使用过程

如下模拟在子线程中进行耗时操作,并将结果返回到主线程中处理

  • Flowable:将要进行的操作
  • subscribeOn():操作要运行的线程
  • observeOn() :处理结果要运行的线程
  • subscribe():处理结果
public class MainActivity extends AppCompatActivity {@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_main);Flowable.fromCallable(() -> {Thread.sleep(3000);return "Done";}).subscribeOn(Schedulers.io()).observeOn(AndroidSchedulers.mainThread()).subscribe(System.out::println, Throwable::printStackTrace);}
}

内存泄漏问题

若Activity退出后,线程仍未执行完,会导致内存泄漏,需要在onDestroy()将任务取消

public class MainActivity extends AppCompatActivity {CompositeDisposable mCompositeDisposable  = new CompositeDisposable();@Overrideprotected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.activity_main);Disposable disposable = Flowable.fromCallable(() -> {Thread.sleep(3000);return "Done";}).subscribeOn(Schedulers.io()).observeOn(AndroidSchedulers.mainThread()).subscribe(System.out::println, Throwable::printStackTrace);mCompositeDisposable.add(disposable);}@Overrideprotected void onDestroy() {super.onDestroy();mCompositeDisposable.dispose();}
}

RxJava源码解析

Publisher

Publisher用于发布数据,Subscriber通过subscribe()订阅数据

public interface Publisher<T> {public void subscribe(Subscriber<? super T> s);
}

Subscriber

Subscriber接收Publisher发布的数据

  • onSubscribe():subscribe()回调函数,回调前会创建Subscription用于控制数据发布和停止
  • onNext():当Subscription调用request()时会调用onNext()发布数据
  • onError():处理接收到的错误
  • onComplete():处理完成的情况
public interface Subscriber<T> {public void onSubscribe(Subscription s);public void onNext(T t);public void onError(Throwable t);public void onComplete();
}

Subscription

Subscription表示Publisher和Subscriber的对应关系

  • request():向Publisher请求数据
  • cancel():让Publisher停止发布数据
public interface Subscription {public void request(long n);public void cancel();
}

Scheduler

createWorker()用于创建Worker ,具体的调度工作由Worker的schedule()完成

public abstract class Scheduler {public abstract Worker createWorker();public abstract static class Worker implements Disposable {@NonNullpublic Disposable schedule(@NonNull Runnable run) {return schedule(run, 0L, TimeUnit.NANOSECONDS);}public abstract Disposable schedule(@NonNull Runnable run, long delay, @NonNull TimeUnit unit);}
}

source传递过程

fromCallable()创建FlowableFromCallable,传递callable

public abstract class Flowable<@NonNull T> implements Publisher<T> {public static <@NonNull T> Flowable<T> fromCallable(@NonNull Callable<? extends T> callable) {return RxJavaPlugins.onAssembly(new FlowableFromCallable<>(callable));}
}

subscribeOn()创建FlowableSubscribeOn,传递this(即FlowableFromCallable)作为source

public abstract class Flowable<@NonNull T> implements Publisher<T> {public final Flowable<T> subscribeOn(@NonNull Scheduler scheduler) {Objects.requireNonNull(scheduler, "scheduler is null");return subscribeOn(scheduler, !(this instanceof FlowableCreate));}public final Flowable<T> subscribeOn(@NonNull Scheduler scheduler, boolean requestOn) {Objects.requireNonNull(scheduler, "scheduler is null");return RxJavaPlugins.onAssembly(new FlowableSubscribeOn<>(this, scheduler, requestOn));}
}

observeOn()创建FlowableObserveOn,传递this(即FlowableSubscribeOn)作为source

public abstract class Flowable<@NonNull T> implements Publisher<T> {public final Flowable<T> observeOn(@NonNull Scheduler scheduler) {return observeOn(scheduler, false, bufferSize());}public final Flowable<T> observeOn(@NonNull Scheduler scheduler, boolean delayError, int bufferSize) {Objects.requireNonNull(scheduler, "scheduler is null");ObjectHelper.verifyPositive(bufferSize, "bufferSize");return RxJavaPlugins.onAssembly(new FlowableObserveOn<>(this, scheduler, delayError, bufferSize));}
}

即依次将自身当作Flowable,作为参数source传递给下一个Flowable

subscribe()流程

subscribe()最终调用具体Flowable的subscribeActual()

public abstract class Flowable<@NonNull T> implements Publisher<T> {......public final Disposable subscribe(@NonNull Consumer<? super T> onNext, @NonNull Consumer<? super Throwable> onError) {return subscribe(onNext, onError, Functions.EMPTY_ACTION);}public final Disposable subscribe(@NonNull Consumer<? super T> onNext, @NonNull Consumer<? super Throwable> onError,@NonNull Action onComplete) {.....LambdaSubscriber<T> ls = new LambdaSubscriber<>(onNext, onError, onComplete, FlowableInternalHelper.RequestMax.INSTANCE);subscribe(ls);return ls;}public final void subscribe(@NonNull FlowableSubscriber<? super T> subscriber) {try {Subscriber<? super T> flowableSubscriber = RxJavaPlugins.onSubscribe(this, subscriber);......subscribeActual(flowableSubscriber);}......}protected abstract void subscribeActual(@NonNull Subscriber<? super T> subscriber);
}

调用过程和传递过程是相反的,先调用FlowableObserveOn的subscribeActual()

public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {......@Overridepublic void subscribeActual(Subscriber<? super T> s) {Worker worker = scheduler.createWorker();if (s instanceof ConditionalSubscriber) {.....} else {source.subscribe(new ObserveOnSubscriber<>(s, worker, delayError, prefetch));}}}

上面的source就是上一层传递下来的FlowableSubscribeOn,即调用到FlowableSubscribeOn的subscribeActual()

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {......@Overridepublic void subscribeActual(final Subscriber<? super T> s) {Scheduler.Worker w = scheduler.createWorker();final SubscribeOnSubscriber<T> sos = new SubscribeOnSubscriber<>(s, w, source, nonScheduledRequests);.....w.schedule(sos);}static final class SubscribeOnSubscriber<T> extends AtomicReference<Thread>implements FlowableSubscriber<T>, Subscription, Runnable {......@Overridepublic void run() {lazySet(Thread.currentThread());Publisher<T> src = source;source = null;src.subscribe(this);}

schedule()最终会调用run()方法,lazySet()切换线程,上面的source就是上一层传递下来的FlowableFromCallable,即将到FlowableFromCallable的subscribeActual()放到指定线程中运行

public final class FlowableFromCallable<T> extends Flowable<T> implements Supplier<T> {final Callable<? extends T> callable;......@Overridepublic void subscribeActual(Subscriber<? super T> s) {DeferredScalarSubscription<T> deferred = new DeferredScalarSubscription<>(s);s.onSubscribe(deferred);T t;try {t = Objects.requireNonNull(callable.call(), "The callable returned a null value");} catch (Throwable ex) {Exceptions.throwIfFatal(ex);if (deferred.isCancelled()) {RxJavaPlugins.onError(ex);} else {s.onError(ex);}return;}deferred.complete(t);}......
}

上面若出错回调onError(),否则调用downstream的onNext()传递结果

public class DeferredScalarSubscription<@NonNull T> extends BasicIntQueueSubscription<T> {public final void complete(T v) {int state = get();for (;;) {......if (state == HAS_REQUEST_NO_VALUE) {lazySet(HAS_REQUEST_HAS_VALUE);Subscriber<? super T> a = downstream;a.onNext(v);if (get() != CANCELLED) {a.onComplete();}return;}value = v;......}}
}

onNext()过程

调用FlowableSubscribeOn.SubscribeOnSubscriber的onNext(),调用downstream的onNext()传递结果

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {static final class SubscribeOnSubscriber<T> extends AtomicReference<Thread>implements FlowableSubscriber<T>, Subscription, Runnable {@Overridepublic void onNext(T t) {downstream.onNext(t);}}
}

调用FlowableObserveOn.BaseObserveOnSubscriber的onNext()、trySchedule(),schedule()最终会调用run()方法,根据sourceMode判断是同步还是异步

  • FlowableObserveOn.ObserveOnSubscriber的runSync()和runAsync()都调用downstream的onNext()传递结果
public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {.....abstract static class BaseObserveOnSubscriber<T>extends BasicIntQueueSubscription<T>implements FlowableSubscriber<T>, Runnable {@Overridepublic final void onNext(T t) {......trySchedule();}'final void trySchedule() {......worker.schedule(this);}@Overridepublic final void run() {if (outputFused) {runBackfused();} else if (sourceMode == SYNC) {runSync();} else {runAsync();}}}static final class ObserveOnSubscriber<T> extends BaseObserveOnSubscriber<T>implements FlowableSubscriber<T> {void runSync() {......final Subscriber<? super T> a = downstream;......for (;;) {......while (e != r) {......a.onNext(v);......}......}}.....@Overridevoid runAsync() {final Subscriber<? super T> a = downstream;for (;;) {......while (e != r) {.....a.onNext(v);.....}.....}}}
}

调用LambdaSubscriber的onNext(),通过传入的Consumer消费掉最终的结果,即通过System.out::println打印出来

public final class LambdaSubscriber<T> extends AtomicReference<Subscription>implements FlowableSubscriber<T>, Subscription, Disposable, LambdaConsumerIntrospection {.....@Overridepublic void onNext(T t) {if (!isDisposed()) {try {onNext.accept(t);} catch (Throwable e) {Exceptions.throwIfFatal(e);get().cancel();onError(e);}}}
}

onSubscribe()和request()流程

FlowableFromCallable回调下一层的onSubscribe(),其将Subscription存到upstream

public final class FlowableFromCallable<T> extends Flowable<T> implements Supplier<T> {final Callable<? extends T> callable;@Overridepublic void subscribeActual(Subscriber<? super T> s) {DeferredScalarSubscription<T> deferred = new DeferredScalarSubscription<>(s);s.onSubscribe(deferred);......}
}public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {static final class SubscribeOnSubscriber<T> extends AtomicReference<Thread>implements FlowableSubscriber<T>, Subscription, Runnable {@Overridepublic void onSubscribe(Subscription s) {if (SubscriptionHelper.setOnce(this.upstream, s)) {......}}}
}

FlowableSubscribeOn回调下一层的onSubscribe(),其回调下一层的onSubscribe()和上一层的request()请求数据

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {......@Overridepublic void subscribeActual(final Subscriber<? super T> s) {Scheduler.Worker w = scheduler.createWorker();final SubscribeOnSubscriber<T> sos = new SubscribeOnSubscriber<>(s, w, source, nonScheduledRequests);s.onSubscribe(sos);}   
}public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {static final class ObserveOnSubscriber<T> extends BaseObserveOnSubscriber<T>implements FlowableSubscriber<T> {......@Overridepublic void onSubscribe(Subscription s) {if (SubscriptionHelper.validate(this.upstream, s)) {this.upstream = s;......queue = new SpscArrayQueue<>(prefetch);downstream.onSubscribe(this);s.request(prefetch);}}}
}

LambdaSubscriber利用FlowableInternalHelper.RequestMax的accept()调用上一层的request(),从schedule()获取数据

public final class LambdaSubscriber<T> extends AtomicReference<Subscription>implements FlowableSubscriber<T>, Subscription, Disposable, LambdaConsumerIntrospection {@Overridepublic void onSubscribe(Subscription s) {if (SubscriptionHelper.setOnce(this, s)) {try {onSubscribe.accept(this);} catch (Throwable ex) {......}}}}public final class FlowableInternalHelper {public enum RequestMax implements Consumer<Subscription> {INSTANCE;@Overridepublic void accept(Subscription t) {t.request(Long.MAX_VALUE);}}
}public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {abstract static class BaseObserveOnSubscriber<T>extends BasicIntQueueSubscription<T>implements FlowableSubscriber<T>, Runnable {@Overridepublic final void request(long n) {if (SubscriptionHelper.validate(n)) {BackpressureHelper.add(requested, n);trySchedule();}}final void trySchedule() {......worker.schedule(this);}}
}

FlowableSubscribeOn.SubscribeOnSubscriber的request()、requestUpstream()判断当前线程,若未切换线程调用schedule()切换线程调用上一层的request()

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {static final class SubscribeOnSubscriber<T> extends AtomicReference<Thread>implements FlowableSubscriber<T>, Subscription, Runnable {@Overridepublic void request(final long n) {if (SubscriptionHelper.validate(n)) {Subscription s = this.upstream.get();if (s != null) {requestUpstream(n, s);} else {......}}}}void requestUpstream(final long n, final Subscription s) {if (nonScheduledRequests || Thread.currentThread() == get()) {s.request(n);} else {worker.schedule(new Request(s, n));}}static final class Request implements Runnable {......@Overridepublic void run() {upstream.request(n);}}}
}

DeferredScalarSubscription接收到请求后,将值传给downstream的onNext()

public class DeferredScalarSubscription<@NonNull T> extends BasicIntQueueSubscription<T> {@Overridepublic final void request(long n) {if (SubscriptionHelper.validate(n)) {for (;;) {int state = get();......if (state == NO_REQUEST_HAS_VALUE) {if (compareAndSet(NO_REQUEST_HAS_VALUE, HAS_REQUEST_HAS_VALUE)) {T v = value;if (v != null) {value = null;Subscriber<? super T> a = downstream;a.onNext(v);if (get() != CANCELLED) {a.onComplete();}}}return;}......}}}
}

Schedulers.io()调度过程

Schedulers.io() = Schedulers.IO = IOTask() = IoHolder.DEFAULT = IoScheduler()

public final class Schedulers {static final Scheduler IO;static final class IoHolder {static final Scheduler DEFAULT = new IoScheduler();}static {IO = RxJavaPlugins.initIoScheduler(new IOTask());}public static Scheduler io() {return RxJavaPlugins.onIoScheduler(IO);}static final class IOTask implements Supplier<Scheduler> {@Overridepublic Scheduler get() {return IoHolder.DEFAULT;}}
}

FlowableSubscribeOn的subscribeActual()通过IoScheduler创建Worker并调用schedule()

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {......@Overridepublic void subscribeActual(final Subscriber<? super T> s) {Scheduler.Worker w = scheduler.createWorker();final SubscribeOnSubscriber<T> sos = new SubscribeOnSubscriber<>(s, w, source, nonScheduledRequests);.....w.schedule(sos);}
}

调用IoScheduler的createWorker()会返回EventLoopWorker

public final class IoScheduler extends Scheduler {@NonNull@Overridepublic Worker createWorker() {return new EventLoopWorker(pool.get());}
}

调用IoScheduler.EventLoopWorker的schedule()最终调用ThreadWorker的父类NewThreadWorker的scheduleActual()

public final class IoScheduler extends Scheduler {static final class EventLoopWorker extends Scheduler.Worker implements Runnable {@NonNull@Overridepublic Disposable schedule(@NonNull Runnable action, long delayTime, @NonNull TimeUnit unit) {......return threadWorker.scheduleActual(action, delayTime, unit, tasks);}}static final class ThreadWorker extends NewThreadWorker {......}
}

调用scheduleActual()将Runnable封装成ScheduledRunnable,通过ScheduledThreadPoolExecutor的submit()或schedule()提交

public class NewThreadWorker extends Scheduler.Worker implements Disposable {private final ScheduledExecutorService executor;volatile boolean disposed;public NewThreadWorker(ThreadFactory threadFactory) {executor = SchedulerPoolFactory.create(threadFactory);}@NonNullpublic ScheduledRunnable scheduleActual(final Runnable run, long delayTime, @NonNull TimeUnit unit, @Nullable DisposableContainer parent) {Runnable decoratedRun = RxJavaPlugins.onSchedule(run);ScheduledRunnable sr = new ScheduledRunnable(decoratedRun, parent);......Future<?> f;try {if (delayTime <= 0) {f = executor.submit((Callable<Object>)sr);} else {f = executor.schedule((Callable<Object>)sr, delayTime, unit);}sr.setFuture(f);} catch (RejectedExecutionException ex) {......}return sr;}
}public final class SchedulerPoolFactory {public static ScheduledExecutorService create(ThreadFactory factory) {final ScheduledThreadPoolExecutor exec = new ScheduledThreadPoolExecutor(1, factory);exec.setRemoveOnCancelPolicy(PURGE_ENABLED);return exec;}
}

线程池会调用FlowableSubscribeOn.SubscribeOnSubscriber的run()方法,SubscribeOnSubscriber继承了AtomicReference<Thread>,lazySet()切换线程调用上一层source的subscribe()

public final class FlowableSubscribeOn<T> extends AbstractFlowableWithUpstream<T , T> {static final class SubscribeOnSubscriber<T> extends AtomicReference<Thread>implements FlowableSubscriber<T>, Subscription, Runnable {@Overridepublic void run() {lazySet(Thread.currentThread());Publisher<T> src = source;source = null;src.subscribe(this);}}}

AndroidSchedulers.mainThread()调度过程

AndroidSchedulers.mainThread() = AndroidSchedulers.MAIN_THREAD = MainHolder.DEFAULT = HandlerScheduler(),通过主线程Looper创建handler

public final class AndroidSchedulers {private static final class MainHolder {static final Scheduler DEFAULT = internalFrom(Looper.getMainLooper(), true);}private static final Scheduler MAIN_THREAD =RxAndroidPlugins.initMainThreadScheduler(() -> MainHolder.DEFAULT);}public static Scheduler mainThread() {return RxAndroidPlugins.onMainThreadScheduler(MAIN_THREAD);}private static Scheduler internalFrom(Looper looper, boolean async) {......return new HandlerScheduler(new Handler(looper), async);}
}

FlowableObserveOn的subscribeActual()通过IoScheduler创建Worker,在onNext()的trySchedule()调用schedule()

public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {@Overridepublic void subscribeActual(Subscriber<? super T> s) {Worker worker = scheduler.createWorker();if (s instanceof ConditionalSubscriber) {......} else {source.subscribe(new ObserveOnSubscriber<>(s, worker, delayError, prefetch));}}abstract static class BaseObserveOnSubscriber<T>extends BasicIntQueueSubscription<T>implements FlowableSubscriber<T>, Runnable {@Overridepublic final void onNext(T t) {......trySchedule();}final void trySchedule() {......worker.schedule(this);}}
}

调用HandlerScheduler的createWorker()返回HandlerWorker()

final class HandlerScheduler extends Scheduler {@Overridepublic Worker createWorker() {return new HandlerWorker(handler, async);}
}

调用HandlerScheduler.HandlerWorker的schedule(),将Runnable封装成ScheduledRunnable,调用主线程handler的sendMessageDelayed()

final class HandlerScheduler extends Scheduler {private static final class HandlerWorker extends Worker {@Overridepublic Disposable schedule(Runnable run, long delay, TimeUnit unit) {......run = RxJavaPlugins.onSchedule(run);ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);Message message = Message.obtain(handler, scheduled);message.obj = this; if (async) {message.setAsynchronous(true);}handler.sendMessageDelayed(message, unit.toMillis(delay));......return scheduled;}}
}

最终主线程会调用FlowableObserveOn.BaseObserveOnSubscriber的run(),根据sourceMode判断是同步还是异步

  • FlowableObserveOn.ObserveOnSubscriber的runSync()和runAsync()都调用downstream的onNext()传递结果
public final class FlowableObserveOn<T> extends AbstractFlowableWithUpstream<T, T> {.....abstract static class BaseObserveOnSubscriber<T>extends BasicIntQueueSubscription<T>implements FlowableSubscriber<T>, Runnable {......@Overridepublic final void run() {if (outputFused) {runBackfused();} else if (sourceMode == SYNC) {runSync();} else {runAsync();}}}static final class ObserveOnSubscriber<T> extends BaseObserveOnSubscriber<T>implements FlowableSubscriber<T> {void runSync() {......final Subscriber<? super T> a = downstream;......for (;;) {......while (e != r) {......a.onNext(v);......}......}}.....@Overridevoid runAsync() {final Subscriber<? super T> a = downstream;for (;;) {......while (e != r) {.....a.onNext(v);.....}.....}}}
}

http://www.ppmy.cn/devtools/168130.html

相关文章

android.widget包介绍

android.widget 是 Android 开发中用于构建用户界面&#xff08;UI&#xff09;的核心包之一。它包含了大量的 UI 控件&#xff08;如按钮、文本框、列表等&#xff09;&#xff0c;这些控件通常被称为“小部件”&#xff08;Widget&#xff09;。android.widget 包中的类大多继…

求职招聘网站源码,找工作招工系统,支持H5和各种小程序

招聘找活招工平台系统源码 招聘求职找工作软件 发布信息积分充值招聘系统,里面带纤细教程 功能介绍: 招工小程序主要针对工地招工工人找工作,工地可以发布招工信息,工人可以发布找活信息,招工信息可以置顶,置顶需要积分,积分可以通过签到、分享邀请好友、充值获取,后…

解决diffusers加载stablediffusion模型,输入prompt总是报错token数超出clip最大长度限制

1. StableDiffusion1.5 在加载huggingface中的扩散模型时&#xff0c;输入prompt总是会被报错超过clip的最大长度限制。 解决方案&#xff1a;使用compel库 from diffusers import AutoPipelineForText2Image import torch import pdb from compel import Compeldevice torc…

浅谈StarRocks SQL性能检查与调优

StarRocks性能受数据建模、查询设计及资源配置核心影响。分桶键选择直接决定数据分布与Shuffle效率&#xff0c;物化视图可预计算复杂逻辑。执行计划需关注分区裁剪、谓词下推及Join策略&#xff0c;避免全表扫描或数据倾斜。资源层面&#xff0c;需平衡并行度、内存限制与网络…

springboot441-基于SpringBoot的校园自助交易系统(源码+数据库+纯前后端分离+部署讲解等)

&#x1f495;&#x1f495;作者&#xff1a; 爱笑学姐 &#x1f495;&#x1f495;个人简介&#xff1a;十年Java&#xff0c;Python美女程序员一枚&#xff0c;精通计算机专业前后端各类框架。 &#x1f495;&#x1f495;各类成品Java毕设 。javaweb&#xff0c;ssm&#xf…

【通缩螺旋的深度解析与科技破局路径】

通缩螺旋的深度解析与科技破局路径 一、通缩螺旋的形成机制与恶性循环 通缩螺旋&#xff08;Deflationary Spiral&#xff09;是经济学中描述价格持续下跌与经济衰退相互强化的动态过程&#xff0c;其核心逻辑可拆解为以下链条&#xff1a; 需求端萎缩&#xff1a;居民消费信…

Excel导出工具类--复杂的excel功能导出(使用自定义注解导出)

Excel导出工具类 前言: 简单的excel导出,可以用easy-excel, fast-excel, auto-poi,在导出实体类上加上对应的注解,用封装好的工具类直接导出,但对于复杂的场景, 封装的工具类解决不了,要用原生的excel导出(easy-excel, fast-excel, auto-poi都支持原生的) 业务场景: 根据…

python爬虫碰到IP被封的情况,如何解决?

在数据抓取和爬虫开发的实践中&#xff0c;Python作为一种功能强大且易于上手的编程语言&#xff0c;被广泛应用于网络数据的采集。然而&#xff0c;随着网络环境的日益复杂&#xff0c;爬虫活动也面临着越来越多的挑战&#xff0c;其中IP被封便是常见且棘手的问题。IP被封不仅…