有必要使用 Oracle 向量数据库吗?

devtools/2025/3/13 4:19:55/

向量数据库最主要的特点是让传统的只能基于具体值/关键字的数据检索,进化到了可以直接基于语义的数据检索。这在AI时代至关重要!

回到标题问题:是否有必要使用 Oracle 向量数据库?

这实际还要取决于你的具体应用需求。

客观来讲,Oracle 23ai 及其向量数据库功能在企业级应用中有一定优势,特别是在与现有 Oracle 生态整合时。以下是几个考虑点:

✅ 适用 Oracle 向量数据库的场景:

  • 已有 Oracle 生态:如果你的数据已经存储在 Oracle Database,直接使用 Oracle 的向量功能(如 AI Vector Search)可以减少系统复杂度,避免额外的数据 ETL 操作。
  • 混合查询(向量 + 关系型数据):Oracle 支持 向量搜索 + 传统 SQL 查询 的混合模式,适合 企业级 BI、数据分析、AI 赋能的业务应用。
  • 高可用性 & 安全性:Oracle 具备企业级的 数据安全、事务处理、可扩展性,相比一些开源向量数据库更可靠。
  • Exadata / ExaCC 加持:如果你的数据库运行在 Exadata 或 ExaCC,Oracle 的向量查询性能更优。

后面笔者工作需要,将测试下Oracle数据库的Vector能力,也会不定期分享。

在此之前,肯定会有不太熟悉Oracle发展的小伙伴会困惑,怎么感觉Oracle是老牌的关系型数据库,咋啥时候成了向量数据库?

答案是,Oracle是多模(Multi-model)数据库,主流模型都支持,早已不单是传统的关系型。

如果你去业界公认的 db-engines 查数据库排名,那么Complete ranking一直都是Oracle没疑问,但是在细分领域,Oracle也OK吗?

  • DB-Engines Ranking - popularity ranking of database management systems

从下图可以看到,DB综合排名Oracle一直还是第一位:

DB-Engines Ranking of Vector DBMS-complete-top15

那么继续查询下 Vector DBMS的排名:

  • DB-Engines Ranking - popularity ranking of vector DBMS

向量数据库排名:DB-Engines Ranking of Vector DBMS

DB-Engines Ranking of Vector DBMS

咦?默认老大是ES(Elasticsearch)?貌似没有看到Oracle的身影?
别着急,这是因为默认未考虑到多模态,勾选上 include secondary database models,你会发现ES直接下滑到第五位,Oracle又出现在了榜首:

DB-Engines Ranking of Vector DBMS-2

其实Oracle早已是多模(Multi-model)数据库,除了最近AI时代很火的向量数据库之外,其他相对常见的比如文档数据库、图数据库、空间数据库,甚至不算常见的RDF全部都支持。

如果去细分领域默认查询,提到 Document stores 你可能首先想到的是 MongoDB;提到 Graph DBMS 你可能首先想到的是图数据库 Neo4j,提到Spatial DBMS,你首先想到的是空间数据 PostGIS。但是你只要把这个 include secondary database models 勾选上,就会发现Oracle已经全部支持这些类型的DB,并处于领先地位。

所以,如果是企业级应用,比如 AI 赋能业务、BI 分析、数据库增强搜索,且你本身就有用到 Oracle 数据库,站在纯技术角度考量,在 Oracle 基础上继续扩展更多的可能场景,是个比较省心省力的选择。

但这也要求企业中的Oracle DBA能够不断扩展自己的技能,拥抱新技术,勇于承担新时代下的挑战。

不可停留在固有的认知上,那个曾经连大对象(LOB)都不允许存到库中的宝贵经验,在这个AI新时代的背景下,恐怕早已经过时了。

此外,在AI时代下,我们不得不面临的一个惨痛现状是,传统意义上的纯运维管理DBA,即便是资深级别,路也会越来越窄了。

但路在脚下,未来也还长,主动拥抱变化,允许一切发生,一起加油突破自己吧!共勉~

转载出处:https://www.cnblogs.com/jyzhao/p/18751798/shi-fou-you-bi-yao-shi-yong-oracle-xiang-liang-shu

行业拓展

分享一个面向研发人群使用的前后端分离的低代码软件——JNPF,适配国产化,支持主流数据库和操作系统。

提供五十几种高频预制组件,包括表格、图表、列表、容器、表单等,内置常用的后台管理系统使用场景和基本需求,配置了流程引擎、表单引擎、报表引擎、图表引擎、接口引擎、门户引擎、组织用户引擎等可视化功能引擎,超过数百种功能控件以及大量实用模板,使得在拖拉拽的简单操作下,也能完成开发。

对于工程师来说,灵活的使用高质量预制组件可以极大的节省时间,将更多精力花费在更有创造性和建设性的代码上。


http://www.ppmy.cn/devtools/166671.html

相关文章

Python的那些事第四十三篇:功能强大的测试框架pytest

pytest:功能强大的测试框架 摘要 本文旨在深入探讨 pytest 这一功能强大的测试框架。pytest 具有简单易用、功能丰富等特点,支持分布式测试、自动化测试用例发现等功能。本文将从 pytest 的基本概念、主要功能、使用方法等多个方面进行详细阐述,并通过具体的代码示例和表格…

利用图神经网络学习计算同构-技术附录

A 算法与复杂度分析 算法 Alg.1COUNT-GNN模型训练 我们在Alg.1中展示了训练CountGNN的算法。在第1行中,我们初始化所有参数以及目标L。在第3-13行中,我们累加给定训练元组的损失。具体地说,在第4-8行中,我们进行了递归的以边为中…

C/S架构与B/S架构

一、定义与核心区别 C/S架构(Client/Server,客户端/服务器) 客户端需安装专用软件(如QQ、企业ERP系统),直接与服务器通信。服务器端通常包括数据库和业务逻辑处理1。特点:客户端承担部分计算任务…

用Python写一个算24点的小程序

一、运行界面 二、显示答案——递归介绍 工作流程&#xff1a; 1. 基本情况&#xff1a;函数首先检查输入的数字列表 nums 的长度。如果列表中只剩下一个数字&#xff0c;它会判断这个数字是否接近 24&#xff08;使用 abs(nums[0] - 24) < 1e-10 来处理浮点数精度问题&…

BERT、T5、GPTs,Llama

&#x1f4d5;参考&#xff1a;大模型研讨课第一期&#xff1a;Why LLMs?、模型结构1&#xff08;共10期&#xff09;_哔哩哔哩_bilibili &#xff08;本系列是课程笔记&#xff09; Encoder-only--BERT Encoder-only 架构的代表——BERT 结构特点&#xff1a;只有编码器 B…

自己的网页加一个搜索框,调用deepseek的API

一切源于一个学习黑马程序员视频的突发奇想 在网页悬浮一个搜索按钮&#xff0c;点击可以实现调用deepseek文本模型回答你的问题 前端实现 前端使用vue实现的 首先是整体页面&#xff1a;AIWidget.vue <template><div><!-- 悬浮 AI 按钮 --><el-button c…

小程序事件系统 —— 33 事件传参 - data-*自定义数据

事件传参&#xff1a;在触发事件时&#xff0c;将一些数据作为参数传递给事件处理函数的过程&#xff0c;就是事件传参&#xff1b; 在微信小程序中&#xff0c;我们经常会在组件上添加一些自定义数据&#xff0c;然后在事件处理函数中获取这些自定义数据&#xff0c;从而完成…

C++面试题:recv和read的区别

recv 和 read 都是用于从文件描述符读取数据的系统调用&#xff0c;但它们的设计目的和使用场景有所不同。以下是两者的主要区别&#xff1a; 1. 设计目的 recvread专为套接字&#xff08;socket&#xff09;通信设计&#xff0c;属于 Berkeley 套接字 API 的一部分。通用的文…