采样算法二:去噪扩散隐式模型(DDIM)采样算法详解教程

devtools/2025/3/3 22:34:43/
参考

https://arxiv.org/pdf/2010.02502
在这里插入图片描述


一、背景与动机

去噪扩散隐式模型(DDIM) 是对DDPM的改进,旨在加速采样过程同时保持生成质量。DDPM虽然生成效果优异,但其采样需迭代数百至数千次,效率较低。DDIM通过以下关键创新解决该问题:

  • 非马尔可夫反向过程:打破严格的马尔可夫链假设,允许跳步采样。
  • 确定性生成路径:通过设定参数σ=0,实现确定性采样,减少随机性带来的不确定性。
  • 兼容性:使用与DDPM相同的训练模型,无需重新训练。

二、DDIM与DDPM的核心区别
特性DDPMDDIM
反向过程严格马尔可夫链非马尔可夫,允许跳跃式采样
采样速度慢(需完整迭代所有时间步)快(可跳过中间步,如50步代替1000步)
随机性控制固定方差调度(βₜ)可调参数σₜ(σ=0时为确定性采样)
训练目标需完整训练噪声预测模型直接复用DDPM的预训练模型

三、数学推导与关键公式
1. 前向过程的一致性

DDIM沿用DDPM的前向扩散过程定义,任意时刻( x_t )可表示为:
x t = α ˉ t x 0 + 1 − α ˉ t ϵ , ϵ ∼ N ( 0 , I ) x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}) xt=αˉt x0+1αˉt ϵ,ϵN(0,I)
其中 α ˉ t = ∏ i = 1 t α i \bar{\alpha}_t = \prod_{i=1}^t \alpha_i αˉt=i=1tαi, α t = 1 − β t \alpha_t = 1 - \beta_t αt=1βt

2. 反向过程的重新参数化

DDIM将反向过程定义为非马尔可夫链,允许从任意时间步( t )直接推断( x_{t-Δ} )(Δ为跳跃步长)。其核心公式为:
x t − Δ = α ˉ t − Δ ( x t − 1 − α ˉ t ϵ θ ( x t , t ) α ˉ t ) ⏟ 预测的  x 0 + 1 − α ˉ t − Δ − σ t 2 ⋅ ϵ θ ( x t , t ) + σ t z x_{t-Δ} = \sqrt{\bar{\alpha}_{t-Δ}} \underbrace{\left( \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right)}_{\text{预测的 } x_0} + \sqrt{1 - \bar{\alpha}_{t-Δ} - \sigma_t^2} \cdot \epsilon_\theta(x_t, t) + \sigma_t z xtΔ=αˉtΔ 预测的 x0 (αˉt xt1αˉt ϵθ(xt,t))+1αˉtΔσt2 ϵθ(xt,t)+σtz

  • 第一项:基于当前 x t x_t xt和预测噪声 ϵ θ \epsilon_\theta ϵθ估计的原始数据 x 0 x_0 x0
  • 第二项:沿预测噪声方向的确定性更新。
  • 第三项:可控的随机噪声项, z ∼ N ( 0 , I ) z \sim \mathcal{N}(0, \mathbf{I}) zN(0,I)
3. 参数σₜ的作用
  • σₜ=0:完全确定性采样(DDIM的标准设定),生成结果唯一。
  • σₜ=√[(1−αₜ₋₁)/(1−αₜ)] · √(1−αₜ/αₜ₋₁):恢复DDPM的采样过程。

四、DDIM采样算法步骤
  1. 输入

    • 预训练噪声预测模型 ϵ θ \epsilon_\theta ϵθ
    • 总时间步 T T T,子序列步数 S S S(如 S = 50 S=50 S=50
    • 方差调度参数 { α t } \{\alpha_t\} {αt}
    • 随机性控制参数 σ t \sigma_t σt
  2. 生成时间步子序列
    选择递减的子序列 { τ 1 , τ 2 , . . . , τ S } \{\tau_1, \tau_2, ..., \tau_S\} {τ1,τ2,...,τS},例如均匀间隔或余弦调度。

  3. 初始化:采样初始噪声 x T ∼ N ( 0 , I ) x_T \sim \mathcal{N}(0, \mathbf{I}) xTN(0,I)

  4. 迭代去噪(从 τ S \tau_S τS τ 1 \tau_1 τ1):

    • 预测噪声 ϵ = ϵ θ ( x τ s , τ s ) \epsilon = \epsilon_\theta(x_{\tau_s}, \tau_s) ϵ=ϵθ(xτs,τs)
    • 估计原始数据
      x ^ 0 = x τ s − 1 − α ˉ τ s ϵ α ˉ τ s \hat{x}_0 = \frac{x_{\tau_s} - \sqrt{1 - \bar{\alpha}_{\tau_s}} \epsilon}{\sqrt{\bar{\alpha}_{\tau_s}}} x^0=αˉτs xτs1αˉτs ϵ
    • 计算下一步状态
      x τ s − 1 = α ˉ τ s − 1 x ^ 0 + 1 − α ˉ τ s − 1 − σ τ s 2 ⋅ ϵ + σ τ s z x_{\tau_{s-1}} = \sqrt{\bar{\alpha}_{\tau_{s-1}}} \hat{x}_0 + \sqrt{1 - \bar{\alpha}_{\tau_{s-1}} - \sigma_{\tau_s}^2} \cdot \epsilon + \sigma_{\tau_s} z xτs1=αˉτs1 x^0+1αˉτs1στs2 ϵ+στsz
      • σ τ s = 0 \sigma_{\tau_s}=0 στs=0时,最后一项消失,变为确定性更新。
  5. 输出 x 0 x_0 x0为生成的数据。


五、伪代码示例
def ddim_sample(model, T, S, alphas_bar, sigmas):# 生成时间步子序列(如从T到0每隔k步取一次)tau = np.linspace(T, 0, S+1, dtype=int)  # 示例:线性间隔x = torch.randn_like(data)  # x_T ~ N(0, I)for s in range(S, 0, -1):t_current = tau[s]t_prev = tau[s-1]# 预测噪声epsilon = model(x, t_current)# 估计x0x0_hat = (x - np.sqrt(1 - alphas_bar[t_current]) * epsilon) / np.sqrt(alphas_bar[t_current])# 计算系数coeff1 = np.sqrt(alphas_bar[t_prev])coeff2 = np.sqrt(1 - alphas_bar[t_prev] - sigmas[t_current]**2)# 更新xx = coeff1 * x0_hat + coeff2 * epsilon + sigmas[t_current] * torch.randn_like(x)return x


http://www.ppmy.cn/devtools/164299.html

相关文章

1024阿里云活动集锦

1024阿里云活动集锦 1024 活动集锦海量咨询,AI助手为你答疑解惑1024 云上实操挑战其他体验活动测评活动写在最后 1024 活动集锦 在1024这个属于广大程序员的日子,阿里云为每一位程序员提供了多场景多批次多活动的开发者活动来供大家happy。可以让每一位…

【vue-echarts】——04.配置项---legend

文章目录 一、配置项-legend图例二、显示结果一、配置项-legend图例 图例组件展现了不同系列的标记,颜色和名字。可以通过点击图例控制哪些系列不显示。 代码如下 Demo4View.vue <template><div class="about">

PostgreSQL 中进行数据导入和导出

在数据库管理中&#xff0c;数据的导入和导出是非常常见的操作。特别是在 PostgreSQL 中&#xff0c;提供了多种工具和方法来实现数据的有效管理。无论是备份数据&#xff0c;还是将数据迁移到其他数据库&#xff0c;或是进行数据分析&#xff0c;掌握数据导入和导出的技巧都是…

深入理解 Linux 内核模块:核心知识、实战解析与高频面试题

1. 什么是 Linux 内核模块&#xff1f; 1.1 定义 Linux 内核模块&#xff08;Kernel Module&#xff09;是 可动态加载和卸载的内核代码&#xff0c;它允许开发者在 无需重启系统 的情况下扩展内核功能&#xff0c;例如&#xff1a; 设备驱动&#xff08;Drivers&#xff09…

提升 Spring Boot 系统性能:高效处理实时数据流的 BufferTrigger 使用详解

提升 Spring Boot 系统性能&#xff1a;高效处理实时数据流的 BufferTrigger 使用详解 在现代应用中&#xff0c;特别是像社交平台、金融系统等高并发场景下&#xff0c;如何高效地处理大量实时数据成为了系统设计的一个关键问题。BufferTrigger 是由快手开源的一个工具&#…

React核心知识及使用场景

React是一个用于构建用户界面的JavaScript库,尤其适合构建单页面应用(SPA)。它基于组件化的开发思想,主要特点是通过虚拟DOM来提高渲染效率。以下是React的核心知识和使用场景: 一. 核心知识 组件化: 类组件和函数组件:React的组件分为类组件和函数组件。类组件通过继承…

3.jvm的执行流程

自上向下 ​编译&#xff1a;.java → .class。 ​加载&#xff1a;类加载器加载字节码到方法区&#xff0c;生成Class对象。 ​内存分配&#xff1a;对象实例存入堆&#xff0c;方法调用栈帧入虚拟机栈。 ​执行&#xff1a;解释器或JIT执行字节码&#xff0c;本地方法通过JNI…

零知识证明在区块链加密货币中的应用分析

目录 1引言 2 研究内容 2.1 零知识认证算法模型 2.2 区块链中的加密货币算法 2.2.1 区块链中的零知识证明算法 2.2.2 算法设计 2.2.3 算法的实现 2.3 方案的安全性分析 2.4 方案的效率分析 3 结论 1引言 随着信息技术的迅速发展&#xff0c;数据隐私和安全性…