【DeepSeek系列】05 DeepSeek核心算法改进点总结

devtools/2025/2/27 14:02:17/

文章目录

    • 一、DeepSeek概要
    • 二、4个重要改进点
      • 2.1 多头潜在注意力
      • 2.2 混合专家模型MoE
      • 2.3 多Token预测
      • 3.4 GRPO强化学习策略
    • 三、2个重要思考
      • 3.1 大规模强化学习
      • 3.2 蒸馏方法:小模型也可以很强大

一、DeepSeek概要

2024年~2025年初,DeepSeek 相继推出了其推理大模型系列:DeepSeek-V2、DeepSeek-V3、DeepSeek-R1-Zero 和 DeepSeek-R1。由于其卓越的性能,以及超高的性价比,让DeepSeek在2025年初迅速风靡全球,被外媒称为“来自东方神秘的力量”。

在这里插入图片描述

二、4个重要改进点

2.1 多头潜在注意力

核心思想:通过低秩压缩技术,将Key和Value映射到一个低维的潜在空间,从而减少KV缓存的大小,显著提高了推理效率。

具体步骤:(优化注意力机制模块)

  • 低秩压缩:将输入的隐藏状态通过一个下投影矩阵映射到低维的潜在空间,生成压缩后的潜在向量。
  • 生成Key和Value:从潜在向量中通过上投影矩阵恢复出Key和Value。
  • 应用RoPE:在生成的Key上应用旋转位置编码(RoPE),以保留位置信息。
  • 计算注意力:将压缩后的Key和Value与查询(Query)结合,通过标准的注意力公式计算注意力输出。
  • 输出:将注意力输出通过一个输出投影矩阵映射回原始维度。
    在这里插入图片描述

2.2 混合专家模型MoE

核心思想:是一种基于混合专家(MoE)架构的前馈网络(FFN),其核心思想是,让不同的Token由不同的“专家”处理,大幅提升计算效率。它结合了负载均衡策略,旨在减少因负载均衡而导致的模型性能下降,同时保持高效的计算资源利用。

具体结构:

  • 共享专家:模型中包含一定数量的共享专家,这些专家对所有token开放,适用于通用任务。
  • 路由专家:每个token根据其输入动态选择一定数量的路由专家进行计算,专门处理某些类别的信息。
  • Router:即路由,类似于门控,其决定哪些专家参与计算;每个token激活的路由专家数量由超参数控制,确保计算效率和负载均衡。
    在这里插入图片描述

2.3 多Token预测

核心思想:扩展了传统的单Token预测任务,允许模型在每个位置预测多个未来的Token。这一方法提高了模型推理过程中的预测效率,同时也增强了模型对未来Token的预测能力。

具体步骤:

  • 模块化设计:MTP通过多个模块实现,每个模块负责预测一个额外的Token。这些模块共享嵌入层和输出头,但各自包含一个Transformer块和一个投影矩阵
  • 因果链保持:在每个预测深度,MTP模块保持完整的因果链,确保预测的Token不会影响之前的预测。
  • 训练目标:对于每个预测深度,MTP计算一个交叉熵损失,并将这些损失平均后乘以一个权重因子,作为整体的MTP损失。
  • 推理优化:在推理阶段,MTP模块可以被丢弃,主模型可以独立运行,或者MTP模块可以用于推测解码以加速生成。

在这里插入图片描述

3.4 GRPO强化学习策略

核心思想:通过组内相对奖励来优化策略模型,而不是依赖传统的批评模型(critic model)。具体来说,GRPO 会在每个状态下采样一组动作,然后根据这些动作的相对表现来调整策略,而不是依赖一个单独的价值网络来估计每个动作的价值。

具体步骤

  • 采样动作组:对于每个输入提示,模型根据当前策略生成一组不同的输出。这些输出的多样性为后续的相对奖励计算提供了基础。
  • 奖励评估:使用奖励模型对每个输出进行评分,这些评分可以基于任务的特定标准,如数学题的正确性、代码的可运行性等。核心点在于:使用的奖励模型是一个基于规则的奖励系统(准确性奖励+格式奖励),而不是一个预训练的深度学习模型。显著降低了计算和存储需求,提高了训练效率。
  • 计算相对优势:将每个输出的奖励值进行归一化处理,得到相对优势。通过组内相对优势的计算,GRPO 减少了策略更新的方差,确保了更稳定的学习过程。
  • KL散度:最后,使用相对优势更新策略;GRPO 引入了KL散度约束,能够更精细地控制策略更新的幅度,保持策略分布的稳定性。
    在这里插入图片描述

三、2个重要思考

3.1 大规模强化学习

在后训练阶段,不一定需要用SFT作为初始步骤,通过纯强化学习的方式,也能到达不错的推理性能,DeepSeek-R1-Zero首次验证了这一路径。

  • 直接在基础模型上应用 RL,而不依赖于有监督的微调(SFT)作为初步步骤。这种方法允许模型探索解决复杂问题的链式思考(CoT),从而开发出 DeepSeek-R1-Zero。DeepSeek-R1-Zero 展示了自我验证、反思和生成长链式思考的能力,这标志着研究社区的一个重要里程碑。值得注意的是,这是首次公开研究验证 LLMs 的推理能力可以通过纯 RL 激励,而无需 SFT。这一突破为该领域的未来发展铺平了道路。
  • DeepSeek-R1 训练流程:该流程包含两个 RL 阶段,旨在发现改进的推理模式并与人类偏好对齐,以及两个 SFT 阶段,作为模型推理和非推理能力的种子。我们相信这一流程将有助于行业开发更好的模型。

3.2 蒸馏方法:小模型也可以很强大

大型模型的推理模式可以被蒸馏到小模型中,其表现优于通过在小模型上应用 RL 的效果。

  • 证明了大型模型的推理模式可以被蒸馏到小模型中,其表现优于通过在小模型上应用 RL 发现的推理模式。开源的 DeepSeek-R1 及其 API 将有助于研究社区在未来蒸馏出更好的小模型。
  • 使用 DeepSeek-R1 生成的推理数据,我们微调了研究社区广泛使用的几种密集模型。评估结果表明,蒸馏后的小型密集模型在基准测试中表现出色。例如,DeepSeek-R1-Distill-Qwen-7B 在 AIME 2024 上达到了 55.5%,超过了 QwQ-32B-Preview。此外,DeepSeek-R1-Distill-Qwen-32B 在 AIME 2024 上达到了 72.6%,在 MATH-500 上达到了 94.3%,在 LiveCodeBench 上达到了 57.2%。这些结果显著优于之前的开源模型,并且与 o1-mini 相当。我们开源了基于 Qwen2.5 和 Llama3 系列的 1.5B、7B、8B、14B、32B 和 70B 检查点,供社区使用。

http://www.ppmy.cn/devtools/163083.html

相关文章

详解直方图均衡化

直方图均衡化(Histogram Equalization) 是图像处理中一种常用的对比度增强技术,通过调整图像的灰度分布,使得图像的直方图尽可能均匀分布,从而提高图像的对比度和细节表现。以下是直方图均衡化的原理详解: …

【Maven】-- Maven Scope 详解

目录 Maven Scope 详解 1. 引言 2. Maven 依赖范围(Scope)分类 2.1 compile(默认范围) 2.2 provided 2.3 runtime 2.4 test 2.5 system 2.6 import(仅用于 dependencyManagement) 3. Scope 作用范…

系统架构设计:系统分析与设计需要掌握的基本理念

在软件工程中,系统分析与设计是构建高质量软件的关键步骤。它决定了软件系统的架构、功能、性能和可维护性。本文将详细介绍系统分析与设计的重要知识点,并结合相关代码示例,帮助你更好地理解和应用这些知识。 一、系统分析 系统分析是软件开发生命周期中的一个重要阶段,…

obj离线加载(vue+threejs)+apk方式浏览

demo需求:移动端,实现obj本地离线浏览 结合需求,利用(vue2threejs173)进行obj的加载,然后采用apk方式(hbuilderX打包发布)移动端浏览; https://github.com/bianbian886/…

RPC 框架项目剖析

RPC 框架项目剖析 说明 本文用于梳理一个 rpc项目的实现细节,此项目基于cpp语言 大概三千行左右,用于学习目的。 项目链接:rpc项目 项目底层类 1.抽象消息类 描述: 各种消息的基类 属性: 消息id,消息类型…

6.6.3 SQL数据查询(一)

文章目录 SELECT语句简单查询连接查询子查询聚集函数 SELECT语句 SELECT是用于查询的动词,基本格式为SELECT-FROM-WHERE,其中WHERE可选。SELECT对应投影运算,FROM对应笛卡尔积运算,WHERE对应选择运算。选择使用的条件表达式p可包含…

【2025全网最新最全】前端Vue3框架的搭建及工程目录详解

文章目录 安装软件Node.js搭建Vue工程创建Vue工程精简Vue项目文件 Vue工程目录的解读网页标题的设置设置全局样式路由配置 安装软件Node.js 下载地址:https://nodejs.org/zh-cn/ 安装完成后,打开cmd,查看环境是否准备好 node -v npm -vnpm使用之前一定…

Ubuntu22上安装MySQL8启动成功,远程无法连接

解决步骤: 1.首先验证网络是否通 ping Linux服务器ip 2.如果网络通,验证是否开放了访问 2.1在服务器上使用 sudo mysql -u root -p 并输入密码连接到mysql 2.2执行 SELECT User, Host FROM mysql.user; 查找一个Host列为’%的用户,这表示允许从任何主机连…