AI客服-接入deepseek大模型到微信(本地部署deepseek集成微信自动收发消息)

devtools/2025/2/22 8:33:45/

1.本地部署

1.1 ollama

Ollama软件通过其高度优化的推理引擎和先进的内存管理机制,显著提升了大型语言模型在本地设备上的运行效率。其核心采用了量化技术(Quantization)以降低模型的计算复杂度和存储需求,同时结合张量并行计算(Tensor Parallelism)混合精度计算(Mixed Precision Computing),在FP16、INT8等低精度格式下实现高效的数值运算,从而大幅减少显存占用并加速推理过程。此外,Ollama支持动态批处理(Dynamic Batching)分布式推理(Distributed Inference),能够根据输入请求动态调整资源分配,并通过多GPU或节点间的高效通信协议(如NCCL)实现弹性扩展,突破单机硬件限制。为确保兼容性,Ollama内置了对主流框架(如PyTorch、TensorFlow)的支持,并通过ONNX RuntimeTensorRT进一步优化模型性能,同时提供灵活的API接口和模块化设计,允许用户进行自定义微调(Fine-tuning)和Prompt工程,满足多样化应用场景需求。

1.1.1 下载安装

https://ollama.com/download
在这里插入图片描述双击打开安装,ollama默认只能安装在C盘,占用:4.6G 空间。

C:\用户\用户名称\AppData\Local\Programs\Ollama

我的电脑中安装目录:C:\Users\Administrator\AppData\Local\Programs\Ollama
在这里插入图片描述
在这里插入图片描述

1.1.2 环境变量

默认ollama去下载部署deepseek模型时,会放在C盘 C:\Users\Administrator\.ollama\models文件夹中。修改环境变量,可以让后续模型下载到其他盘符。

OLLAMA_MODELS D:\ollama\models
在这里插入图片描述

配置好之后,ollama重启重启电脑 让环境变量生效。

1.2 deepseek部署

https://ollama.com/library/deepseek-r1
在这里插入图片描述
根据自己电脑配置部署模型规模

模型规模硬盘显存需求内存显卡要求
1.5B1.1 GB~2-3 GB~4-6 GB单卡(RTX 3060/3090/4090)
7B4.7 GB~8-12 GB~16-24 GB单卡(RTX 3090/4090/A100)
8B4.9 GB~9-13 GB~18-26 GB单卡(RTX 3090/4090/A100)
14B9.0 GB~16-20 GB~32-40 GB单卡(A100 40GB)
32B20 GB~35-45 GB~70-90 GB单卡(A100 80GB)或多卡并行
70B43 GB~75-90 GB~150-180 GB多卡(A100/H100 + NVLink)
671B404 GB~700-900 GB~1.4-1.8 TB多卡集群(A100/H100 + NVLink)

执行命令本地部署:

ollama run deepseek-r1:1.5b

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.deepseek调用

在这里插入图片描述
ollama中的服务可以用两种方式启动,默认监听本机localhost 和 端口11434

  • 在终端执行命令: ollama serve
    在这里插入图片描述
  • 找到ollama图标,点击运行
    在这里插入图片描述

2.1 终端调用

C:\Users\Administrator>ollama list
NAME                ID              SIZE      MODIFIED       
deepseek-r1:1.5b    a42b25d8c10a    1.1 GB    4 hours ago
C:\Users\Administrator>ollama run deepseek-r1:1.5b
>>> 
>>> 学习python的路径?
<think>
好吧,我现在要学习Python了。我对它还不是很了解,所以得一步一步来。首先,我应该确定我的学习目标是什么。可能是从基础开始,比如语     
法和基本概念,然后逐步深入到更高级的内容。
...
>>> /bye

在这里插入图片描述

2.2 API调用

对话相关的API有两个:

  • /api/generate,用于一次性生成特定文本的场景。
  • /api/chat,针对多轮对话上下文生成的回复消息。

接下来,结合案例来使用API来调用,需要安装Python环境 和 requests 模块。

示例:/api/generate

该 API 主要用于基于给定的提示信息生成文本内容。它适用于一次性生成特定文本的场景,不涉及对话上下文的维护.请求参数model:要使用的模型名称,例如 `deepseek-r1:1.5b`。prompt:提示信息,即向模型提供的输入文本,模型会根据该提示生成相应的内容。可选参数:还可以包含其他参数来控制生成的行为,如 `temperature`(控制生成文本的随机性,值越大越随机)、`max_tokens`(限制生成文本的最大令牌数)等。示例请求体{"model": "llama2","prompt": "写一首关于春天的诗","temperature": 0.7,"max_tokens": 200}
import requestsres = requests.post(url="http://localhost:11434/api/generate",json={"model": "deepseek-r1:1.5b","prompt": "写一首关于春天的诗","stream": False}
)data_dict = res.json()
print(data_dict)

在这里插入图片描述
示例:/api/chat

用于模拟对话交互,它会维护对话的上下文,使得模型能够根据之前的对话内容生成合适的回复,实现更自然、连贯的对话效果。请求参数model:要使用的模型名称。messages:一个包含对话消息的列表,每个消息对象包含 role(角色,如 user 表示用户消息,assistant 表示模型回复)和 content(消息内容)。同样可以包含可选参数来控制生成行为。示例请求体{"model": "deepseek-r1:1.5b","messages": [{"role": "user","content": "你好"}],"temperature": 0.8}
import requestsres = requests.post(url="http://localhost:11434/api/chat",json={"model": "deepseek-r1:1.5b","messages": [{"role": "user", "content": "你好"}],"stream": False}
)
data_dict = res.json()
print(data_dict)

在这里插入图片描述
可以将对话保存下来,生成对话:

import requestsmessage_list = []while True:text = input("请输入:")user_dict = {"role": "user", "content": text}message_list.append(user_dict)res = requests.post(url="http://localhost:11434/api/chat",json={"model": "deepseek-r1:1.5b","messages": message_list,"stream": False})data_dict = res.json()res_msg_dict = data_dict['message']print(res_msg_dict)message_list.append(res_msg_dict)

在这里插入图片描述

2.3 网页交互

搭建一个网站,在内部进行访问使用。

第1步:电脑安装nodejs

https://nodejs.org/zh-cn/download
在这里插入图片描述
第2步:下载网站源码

https://github.com/ollama-webui/ollama-webui-lite
在这里插入图片描述
下载并解压至任意目录。例如:F:\ollama-webui-lite-main 【不要有中文路径】
在这里插入图片描述
第3步:安装依赖并启动网站

打开CMD终端进入项目目录并执行相关命令。

C:\Users\Administrator>F:
F:\>cd F:\ollama-webui-lite-main
F:\ollama-webui-lite-main>
F:\ollama-webui-lite-main>npm ci
F:\ollama-webui-lite-main>npm run dev --  --port=9001

在这里插入图片描述
访问网站:http://localhost:9001/
在这里插入图片描述

3.微信收发信息

wxauto 是一个基于UIAutomation开发的用于实现微信自动化得库。

消息发送:支持发送文字、图片、文件、@群好友、引用消息等功能
聊天记录:可获取好友的聊天记录内容
监听消息:实时获取指定监听好友(群)的新消息

所用开发环境:Python 3.12.6 + PC微信 3.9.12(目前最新)
在这里插入图片描述
实现原理:在电脑安装PC微信,基于wxauto自动控制微信界面来实现收发消息等功能。
在这里插入图片描述
安装wxauto

pip install wxauto==3.9.11.17.5

发消息

from wxauto import WeChat
wx = WeChat()
wx.SendMsg(msg="你好呀", who="xxx_888")  # 指定人/群发消息# wx.SendMsg(msg="你好呀", who="群名", at=["张三","张开"])   # 群消息+@指定人
# wx.SendMsg(filepath="F:\xxx.png", who="用户或群") 
# wx.SendMsg(filepath=["文件A","文件B","F:\xxx.png"], who="用户或群") 

收消息(所有)

from wxauto import WeChatwx = WeChat()while True:# 等待接受收到的最新消息# {"用户昵称A":[消息对象1,消息对象2,消息对象3], "用户昵称B":[消息对象1,消息对象2,消息对象3], }msg_dict = wx.GetNextNewMessage()for username, msg_list in msg_dict.items():print("昵称:", username)# [消息对象1, 消息对象2, 消息对象3]for msg in msg_list:print("\t消息", msg.type, msg.content)

收消息(指定用户)

from wxauto import WeChat
wx = WeChat()wx.AddListenChat(who="运营")
wx.AddListenChat(who="xxx_888")while True:# { "用户A聊天窗口":[消息对象1,消息对象2,消息对象3],  "用户B聊天窗口":[消息对象1,消息对象2,消息对象3]}listen_dict = wx.GetListenMessage()for chat_win,message_list in listen_dict.items():# 用户或群名chat_user = chat_win.who# [消息对象1,消息对象2,消息对象3]for msg in message_list:if msg.type != "friend":continueprint(chat_user, msg.content)# 回复消息# chat_win.SendMsg("回复的内容")time.sleep(5)

👏欢迎贡献代码和改进项目!


http://www.ppmy.cn/devtools/160900.html

相关文章

基于ffmpeg+openGL ES实现的视频编辑工具-opengl相关逻辑(五)

在我们的项目中,OpenGL ES 扮演着至关重要的角色,其主要功能是获取图像数据,经过一系列修饰后将处理结果展示到屏幕上,以此实现各种丰富多样的视觉效果。为了让大家更好地理解后续知识,本文将详细介绍 OpenGL 相关代码。需要注意的是,当前方案将对 OpenGL 的所有操作都集…

Redis 设置密码无效问题解决

一、验证密码有没有生效 运行cmd&#xff0c;cd到redis的目录下 输入“redis-cli.exe” 回车 输入“auth 123456” 回车 若错误&#xff0c;说明没有设置密码或者设置的密码没有生效 输入“exit” 回车就立即退出redis 二、解决方案是&#xff1a;直接修改后缀是 .conf 的…

RT-Thread+STM32L475VET6实现红外遥控实验

文章目录 前言一、板载资源介绍二、具体步骤1. 确定红外接收头引脚编号2. 下载infrared软件包3. 配置infrared软件包4. 打开STM32CubeMX进行相关配置4.1 使用外部高速时钟&#xff0c;并修改时钟树4.2 打开定时器16(定时器根据自己需求调整)4.3 打开串口4.4 生成工程 5. 打开HW…

Ollama Docker 镜像部署

文章来源&#xff1a;Docker 部署文档 -- Ollama 中文文档|Ollama官方文档 仅 CPU docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama英伟达 GPU 安装 NVIDIA Container Toolkit。 使用 Apt 安装 配置存储库 curl -fsSL https://nvidia.g…

体验用ai做了个python小游戏

体验用ai做了个python小游戏 写在前面使用的工具2.增加功能1.要求增加视频作为背景。2.我让增加了一个欢迎页面。3.我发现中文显示有问题。4.我提出了背景修改意见&#xff0c;欢迎页面和结束页面背景是视频&#xff0c;游戏页面背景是静态图片。5.提出增加更多游戏元素。 总结…

BUUCTF-Web方向16-20wp

目录 [极客大挑战 2019]PHP[ACTF2020 新生赛]BackupFile[RoarCTF 2019]Easy Calc[极客大挑战 2019]BuyFlag[BJDCTF2020]Easy MD5 [极客大挑战 2019]PHP 由内容提示应该存在源码备份&#xff0c;常见的如下&#xff0c;一个个尝试 后缀&#xff1a;tar tar.gz zip rar 名字&am…

buu-[HarekazeCTF2019]baby_rop-好久不见40

ROP&#xff08;Return - Oriented Programming&#xff09;链&#xff0c;即面向返回编程链&#xff0c;是一种在计算机安全领域&#xff0c;特别是在漏洞利用技术中使用的方法。它允许攻击者在存在内存保护机制&#xff08;如数据执行保护 DEP&#xff09;的环境中执行恶意代…

爱普生 SG-8101CE 可编程晶振在笔记本电脑的应用

在笔记本电脑的精密架构中&#xff0c;每一个微小的元件都如同精密仪器中的齿轮&#xff0c;虽小却对整体性能起着关键作用。如今的笔记本电脑早已不再局限于简单的办公用途&#xff0c;其功能愈发丰富多样。从日常轻松的文字处理、网页浏览&#xff0c;到专业领域中对图形处理…