[C++语法基础与基本概念] std::function与可调用对象

devtools/2025/2/19 17:13:40/

std::function与可调用对象

  • 函数指针
  • lambda表达式
  • std::function与std::bind
  • 仿函数
  • 总结
    • std::thread与可调用对象
    • std::async与可调用对象
    • 回调函数

可调用对象是指那些像函数一样可以直接被调用的对象,他们广泛用于C++的算法,回调,事件处理等机制。

函数指针

函数指针是最简单的一种可调用对象

我们大家应该都用过函数名来作为函数的地址,但是函数名称其实与函数的地址是有一些细微的差别的

void printHello() {std::cout << "Hello, World!" << std::endl;
}

以上面的函数为例,函数的名称是printHello, 但是它的类型其实是void() , 而不是void(*)(),但是它可以被隐式的转化成void( * ),

void (*ptr)() = printHello;

在上面这行代码中,printHello会被隐式转化为void( * )(), 这就跟char [] 能被隐式的转化为char *很类似

如下代码也能完成上述转化,但是是显示的取函数地址

void (*ptr)() = &printHello

显示利用&运算符取地址

言归正传,在得到函数指针之后,我们就可以直接通过函数指针调用函数,并且可以将其作为一些函数的参数

例如:

bool cmp( int a, int b)
{return a < b;
}std::vector<int> vec = {2,1,4,3,7,6};
std::sort(vec.begin(),vec.end(),cmp);

上述例子就会将容器vec中的元素从小到大进行一个排序了。

lambda表达式

lambda是C++11引入的一种匿名函数对象,提供了一种简单的方式用来定义内联函数,它的标准格式如下:

[capture-list] (parameters) -> return-type { body }

[capture-list] 捕获列表,捕获的变量可以在lambda表达式的函数体内使用
(parameters) 参数列表,与函数的参数列表一致
-> return-type 返回值,如果不写,lambda表达式会自动推导返回值
{body} 函数体

既然返回值可以省略,lambda表达式最常见的格式就是

[](){}

其中

[&x] 表示用引用的方式捕获变量x
[x] 表示用值捕获的方式捕获变量x
[=] 按值捕获的方式捕获作用域内所有变量
[&] 按引用捕获的方式捕获作用域内所有变量
[a, &b] 按值捕获a, 按引用捕获b

lambda表达式最简单的使用方式:

auto lambda = [](){std::cout << "Hello World" << std::endl;  
};
lambda();
int x = 5;
auto lambda = [x](int a){return x + a;
};
lambda(6);

如上图两个例子所示,lambda表达式可以就像普通函数那样被调用

lambda表达式的类型

auto lambda = [](){std::cout << "Hello World" << std::endl;  
};

你知道此时auto是什么类型吗?

编译器会为每一个lambda表达式,生成如下面所示的一个类:

class __lambda_1 {
public:void operator()() const {std::cout << "Hello, Lambda!" << std::endl;}
};

这个类是使用了operator重载了()运算符的一个类,听起来跟隐函数非常像,此时auto的类型就是 __lambda_1

同样,lambda表达式也可以带入到各种以可调用对象为参数的函数之中

auto lambda [](int x,int y){return x < y;
};std::vector<int> vec = {2,3,1,7,6,5};
std::sort(vec.begin(),vec.end(), lambda);

std::function与std::bind

std::funtion也是一个可调用对象,它本质上叫做泛型函数包装器,可以用来包装任何的可调用对象,只要这个可调用对象的调用签名与自己匹配即可。 也可以用来包装另一个std::funtion,因为function也是一个可调用对象

什么是调用签名?

std::function<int(int,int)> func ;

上面定义了一个调用签名为 int (int,int)的function对象,表示这个function只能用来包装返回值为int,参数为(int,int)的可调用对象

绑定普通函数-无参数

void printHello() {std::cout << "Hello, World!" << std::endl;
}std::function<void()> func = printHello;
func();

绑定lambda表达式

auto lambda = [](){std::cout << "Hello World" << std::endl;  
};
std::function<void()> func = lambda;
func();

绑定仿函数

class PrintFunctor {
public:void operator()() const {std::cout << "Hello from functor!" << std::endl;}
};PrintFunctor functor;
std::function<void()> func = functor;
func();
-----------------------------------------------------
int add(int a,int b)
{return a + b;
}class PrintFunctor {
public:int operator()(int x) const {return add(x,2);}
};
PrintFunctor functor;
std::function<int(int)> func = functor;
func(1);

绑定另一个function

void printHello() {std::cout << "Hello, World!" << std::endl;
}
std::function<void()> func1 = printHello;
std::function<void()> func2 = func1;

绑定普通函数-带参数

int add(int a,int b)
{return a + b;
}std::function<int(int,int)> func = add;
int res = func(1,2);

以上是一些实用std::function的最简单的例子,但是function还远不止于此,如果我们想让绑定更加灵活呢?例如,我们想绑定上面的add函数,但是其中一个参数是已经确定的,如何绑定呢? 这时候就需要用到std::bind

std::bind是用来生成std::function的一个函数,能让std::function的包装更加灵活, 他可以将所有的可调用对象包装成std::function

std::bind绑定普通函数

int add(int a,int b)
{return a < b ;
}
--------------------------------------------------------固定参数绑定
std::function<int()> func =  std::bind(add,1,2);
func(); //调用
--------------------------------------------------------不定参数绑定
std::function<int(int)> func = std::bind(add,1,std::placeholders::_1);
func(2); //调用std::function<int(int,int)> func = std::bind(add,std::placeholders::_1,std::placeholders::_2);
func(1,2);//调用

其中

std::placeholders::_1

表示参数,_1后缀表示第一个不定参数,如果想绑定多个不定参数,只需要让后缀继续加就行

std::bind绑定类成员函数

class MyClass {
public:int add(int x, int y) {return  x  + y;}
};MyClass myclass;
std::function<int(int,int)> func = std::bind(&MyClass:add,&myclass,add,std::placeholders::_1,std::placeholders::_2);
func(1,2); //调用

绑定lambda表达式

std::function<int(int,int)> func =  std::bind([](int x,int y){return x + y;},std::placeholders::_1,std::placeholders::_2);func(1,2); //调用

绑定std::function(套娃)

int add(int a,int b)
{return a + b ;
}
std::function<int(int,int)> func = std::bind(add,std::placeholders::_1,std::placeholders::_2);
std::function<int(int)> func1 =  std::bind(func1,1,std::placeholders::_1);
func1(2);

绑定仿函数

class ADDFunctor { //
public:int operator()(int x) const {return add(x,2);}
};
ADDFunctor functor;
std::function<int(int)> func = std::bind(functor,std::placeholders::_1);
func(1);

上面介绍了这么多,其实都一样,只要是可调用对象,绑定的方式都相同,只有类成员函数的绑定方式要特殊一些,需要指定对象。

同样,std::function也可以带入到std::sort中作为比较子:

std::function<iint(int,int)> func =  std::bind([](int x,int y){return x < y;},std::placeholders::_1,std::placeholders::_2);std::vector<int> vec = {5,2,3,7,1,4};std::sort(vec.begin(),vec.end(),func);---------------------------------------------std::sort(vec.begin(),vec.end(),std::bind([](int x,int y){return x < y;
},std::placeholders::_1,std::placeholders::_2)); //lambda表达式比较多余,这里直接用lambda表达式就行
//仅用来展示语法

在使用std::bind绑定时,经常要用到std::placeholders::_1,这就会导致单行代码过于长,为了处理好看的问题,经常使用宏定义的方式处理。

#define PHS std::placeholders// 绑定普通函数(当然也可以用于绑定其他可调用对象)
#define BIND_FUNC_0(_f) std::bind(_f)
#define BIND_FUNC_1(_f) std::bind(_f, PHS::_1)
#define BIND_FUNC_2(_f) std::bind(_f, PHS::_2)//绑定类成员函数
#define BIND_CLASS_FUNC_0(_c, _f, _p) std::bind(&_c::_f, _p)
#define BIND_CLASS_FUNC_1(_c, _f, _p) std::bind(&_c::_f, _p, PHS::_1)
#define BIND_CLASS_FUNC_2(_c, _f, _p) std::bind(&_c::_f, _p, PHS::_1,PHS::_2)

BIND_FUNC_0 表示绑定一个参数为0的可调用对象 _f表示函数名称
BIND_FUNC_1 表示绑定一个参数为1的可调用对象,以此类推

BIND_CLASS_FUNC_0 表示绑定一个参数为0的类成员函数_c表示类名,_f表示函数名,_p表示对象名称

仿函数

仿函数就是使用 operator重载了()运算符的类

class PrintFunctor {
public:int operator()(int x) const {return add(x,2);}
};
PrintFunctor functor;
functor(1);

一个类在重载了()运算符之后,就可以像函数那样被直接调用,但是它本质上又不是函数,所以吧叫做仿函数

class Functor {
public:int operator()(int x, int y) const {return x < y;}
};
Functor functor;
std::vector<int> vec = {5,2,3,7,1,4};
std::sort(vec.begin(),vec.end(), functor);

总结

除了上述std::sort的例子以外,还有一些用到可调用对象的函数

std::thread与可调用对象

普通函数

void Run(int x, int y, int z)
{.......
}std::thread t(Run,1,2,3);

类成员函数

class Myclass{public:void Run(int x,int y,int z){..........}
};
MyClass myclass;
std::thread t(&Myclass::Run,&myclass,1,2,3);

lambda表达式,std::function, 仿函数绑定方式也都和普通函数一样

auto lambda = [](int x,int y,int z){};
std::thread t(lambda,1,2,3);
----------------------------------------------
std::function<void(int,int,int)> func = std::bind(lambda, std::placeholders::_1,std::placeholders::_2, std::placeholders::_3);
std::thread t(func,1,2,3);
----------------------------------------------
class Myclass{public:void Run(int x,int y, int z){.............}
};
MyClass myclass;
std::thread t(myclass,1,2,3);

std::async与可调用对象

绑定std::function(其余就不展示了,因为都一样)

void Run(int x)
{.............
}
std::function<void(int)> func =  std::bind(Run,std::placeholders::_1);
std::async(std::launch::async, func,10); //开启一个异步任务

绑定类成员函数

class Myclass{public:void Run(int x,int y,int z){..........}
};
MyClass myclass;
std::async(std::launch::async,&Myclass::Run,&myclass,1,2,3);

回调函数

除了上面的例子之外,可调用对象还经常作为回调函数使用

什么是回调函数?

回调函数就是将一个可调用对象,通过函数或以其它方式传递过去并存储起来,然后在合适的时机被调用,通常是在某些事件发生之后被调用,例如在网络通信中,收到消息事件,如收到其他套接字发送来的消息,也或是在MQ,RPC通信时收到消息时被调用。

下面举一个简单的例子:

class Base
{
public: virtual void Notify(){};
};
class Base1
{public:virtual void SetFunc(std::function<void()> func){};
};
class Derived:pulibc Base, pulibc Base1
{public:Derive(){};void Notify(); //通常是某个事件的触发函数,例如收到某些信息时触发,读到某些数据时被调用触发void SetFunc(std::function<void()> func);//设置std::functionprivate:std::function<void()> func_;}
void Derived::Notify()
{// ..........// 对接受/读取的数据进行处理 .......//执行回调函数if(func_){func_();}
}void Derived::SetFunc(std::function<void()> func)
{func_ =  func;
}
Base1* base1 = new Derived();void PrintReceive()
{std::cout << "receive data!"<< std::endl;
}
std::function<void()> func = PrintReceive;base1->SetFunc(func);
Base* base = base1;//base指针也可能被传递给其他对象,在其他对象内部使用,当收到消息时,base指针的Notify函数被调用
//在Notify函数中触发了我们的回调函数,实现了当收到数据时,打印收到数据的日志。

http://www.ppmy.cn/devtools/159267.html

相关文章

GO语言中的悲观锁与乐观锁

乐观锁和悲观锁是两种不同的并发控制策略&#xff0c;它们的主要区别在于对资源冲突的处理方式不同。每种锁都有适用的场景&#xff0c;根据实际情况选择使用哪种锁&#xff0c;可以帮助提高系统的并发性能和效率。 1. 悲观锁&#xff08;Pessimistic Locking&#xff09; 悲…

DevOps工具链概述

1. DevOps工具链概述 1.1 DevOps工具链的定义 DevOps工具链是支持DevOps实践的一系列工具的集合&#xff0c;这些工具覆盖了软件开发的整个生命周期&#xff0c;包括需求管理、开发、测试、部署和运维等各个环节。它旨在通过工具的集成和自动化&#xff0c;打破开发与运维之间…

打破AI黑盒,拥抱开源力量:基于openGauss+DeepSeek的本地知识库,打造你的专属AI助手!

引言&#xff1a;什么是RAG和LLM&#xff1f; LLM (Large Language Model&#xff0c;大语言模型): 就像 ChatGPT 这样的 AI 模型&#xff0c;拥有强大的语言理解和生成能力&#xff0c;但它们的知识局限于训练数据&#xff0c;且可能产生“幻觉”&#xff08;即生成不准确的信…

kron积计算mask类别矩阵

文章目录 1. 生成类别矩阵如下2. pytorch 代码3. 循环移动矩阵 1. 生成类别矩阵如下 2. pytorch 代码 import torch import torch.nn as nn import torch.nn.functional as Ftorch.set_printoptions(precision3, sci_modeFalse)if __name__ "__main__":run_code 0…

rustdesk远程桌面自建服务器

首先&#xff0c;我这里用到的是阿里云服务器 centos7版本&#xff0c;win版客户端。 准备工作 centos7 服务器端文件&#xff1a; https://github.com/rustdesk/rustdesk-server/releases/download/1.1.11-1/rustdesk-server-linux-amd64.zip win版客户端安装包&#xff1…

P10452 货仓选址

链接&#xff1a;P10452 货仓选址 - 洛谷 题目描述 在一条数轴上有 N 家商店&#xff0c;它们的坐标分别为 A1​∼AN​。 现在需要在数轴上建立一家货仓&#xff0c;每天清晨&#xff0c;从货仓到每家商店都要运送一车商品。 为了提高效率&#xff0c;求把货仓建在何处&…

游戏引擎学习第101天

回顾当前情况 昨天的进度基本上完成了所有内容&#xff0c;但我们还没有进行调试。虽然我们在运行时做的事情大致上是对的&#xff0c;但还是存在一些可能或者确定的bug。正如昨天最后提到的&#xff0c;既然现在时间晚了&#xff0c;就不太适合开始调试&#xff0c;所以今天我…

C# windowForms 的DataGridView控件的使用

C# Windows Forms DataGridView 控件使用详解 DataGridView 是 Windows Forms 中用于显示和编辑表格数据的核心控件。它支持高度自定义的列类型、数据绑定、事件处理和丰富的样式配置。以下是其详细使用方法。 目录 基础使用 数据绑定 列类型与自定义