【C++】RBTree(红黑树)模拟实现

devtools/2025/2/15 12:04:35/

文章目录

后续有时间会增加erase

1.红黑树的概念

红黑树是一种自平衡的二叉搜索树。每个节点额外存储了一个 color 字段 (“RED” or “BLACK”), 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡。

2.红黑树的性质

一棵合法的红黑树必须遵循以下四条性质:

  1. 节点为红色或黑色
  2. 根节点是黑色的 (在不同的实现下,该条性质并非必须满足)
  3. NIL 节点(空叶子节点)为黑色
  4. 红色节点的子节点为黑色
  5. 从根节点到 NIL节点的每条路径上的黑色节点数量相同

3.红黑树的结点

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;std::pair<K, V> _kv;Colour _col;RBTreeNode(const std::pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

4.insert函数(插入结点)

新节点的默认颜色是红色(如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质4不能有连在一起的红色节点,此时需要对红黑树分情况来讨论)
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
所有插入的情况可分为以下三种:

  • 情况一: cur为红,p为红,g为黑,u存在且为红
  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
	bool Insert(const std::pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED; // 新增节点给红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// parent的颜色是黑色也结束while (parent && parent->_col == RED){// 关键看叔叔Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{if (cur == parent->_left){//     g  //   p   u// c RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g  //   p     u//      c RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

5.左旋、右旋

这里和AVLTree的旋转一样

	void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_right == parent){ppNode->_right = subR;}else{ppNode->_left = subR;}subR->_parent = ppNode;}}

6.总代码

#include<vector>enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;std::pair<K, V> _kv;Colour _col;RBTreeNode(const std::pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const std::pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED; // 新增节点给红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// parent的颜色是黑色也结束while (parent && parent->_col == RED){// 关键看叔叔Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{if (cur == parent->_left){//     g  //   p   u// c RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g  //   p     u//      c RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_right == parent){ppNode->_right = subR;}else{ppNode->_left = subR;}subR->_parent = ppNode;}}void InOrder(){_InOrder(_root);cout << endl;}bool IsBalance(){if (_root->_col == RED){return false;}int refNum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refNum;}cur = cur->_left;}return Check(_root, 0, refNum);}private:bool Check(Node* root, int blackNum, const int refNum){if (root == nullptr){//cout << blackNum << endl;if (refNum != blackNum){cout << "存在黑色节点的数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "存在连续的红色节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}private:Node* _root = nullptr;//size_t _size = 0;
};

http://www.ppmy.cn/devtools/159040.html

相关文章

k8s优雅操作pod容器组

k8s优雅操作pod容器组 回退备份 kubectl get deploy deployName -o yaml>>deployName-bak-date "%Y-%m-%d".yaml获取副本数 replicasecho | kubectl get -o template deploy/deployName --template{{.spec.replicas}}停止容器组 kubectl scale deployment …

第J7周:对于ResNeXt-50算法的思考

目录 FROM思考 FROM &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 &#x1f4cc;你需要解决的疑问&#xff1a;这个代码是否有错&#xff1f;对错与否都请给出你的思考 &#x1f4cc;打卡要求&#xff1a…

XSS 常用标签及绕过姿势总结

XSS 常用标签及绕过姿势总结 一、xss 常见标签语句 0x01. 标签 <a href"javascript:alert(1)">test</a> <a href"x" onfocus"alert(xss);" autofocus"">xss</a> <a href"x" onclickeval(&quo…

wps或office的word接入豆包API(VBA版本)

直接上代码&#xff0c;由于时间匆忙&#xff0c;以后写个详细的教程 #If VBA7 ThenPrivate Declare PtrSafe Function URLDownloadToFile Lib "urlmon" Alias "URLDownloadToFileA" (ByVal pCaller As Long, ByVal szURL As String, ByVal szFileName As…

浅谈无人机群技术的作战应用与战略意义

近年来&#xff0c;无人机技术在军事领域的应用迅速崛起&#xff0c;成为现代战争中不可或缺的力量倍增器。无人机群技术&#xff0c;即通过集群控制系统使多个无人机在相同或不同任务环境下协同工作&#xff0c;形成一种集体作战、智能化操作的新模式&#xff0c;更是将这一趋…

汽车油箱行业分析

一、行业现状 汽车油箱行业作为汽车产业的重要组成部分&#xff0c;主要负责燃油的储存、转移和使用&#xff0c;是发动机的动力来源。随着汽车市场的不断扩大和消费者对汽车性能要求的提高&#xff0c;汽车油箱行业也在不断创新和升级。目前&#xff0c;汽车油箱行业正朝着轻…

Python的web框架Flask适合哪些具体的应用开发?

Flask 适用的具体应用及实现案例代码 Flask 是一个轻量级的 Web 应用框架,以其简洁性和灵活性而广受欢迎。以下是 Flask 适合的具体应用场景及相关的实现案例代码: 1. 小型网站或博客 由于 Flask 的简洁性和易于使用的特性,它非常适合用来搭建个人博客或者小型的企业网站…

RK3588开发板部署DeepSeek-R1-Distill-Qwen-1.5B的步骤及问题

目录 引言 为什么要做端侧部署 技术发展层面 应用需求层面 开发与成本层面 产业发展层面 模型选择 模型蒸馏 模型转换 量化选择 量化方式 模型大小 计算效率 模型精度 测试 测试程序编译 测试结果 结语 引言 最近DeepSeek已经成为一个非常热门的话题&#x…