大数据项目2:基于hadoop的电影推荐和分析系统设计和实现

devtools/2025/2/11 4:57:26/

前言

大数据项目源码资料说明:
大数据项目资料来自我多年工作中的开发积累与沉淀。

我分享的每个项目都有完整代码、数据、文档、效果图、部署文档及讲解视频。
可用于毕设、课设、学习、工作或者二次开发等,极大提升效率!

1、项目目标

本项目的目的是设计并实现一个基于Hadoop的电影推荐系统,以应对大数据环境下电影推荐服务的挑战。通过整合电影、评分和用户数据集,并利用MapReduce框架进行高效处理,系统能够为用户提供个性化的电影推荐。项目采用多种先进技术,包括Java、Maven、Hadoop、MapReduce、MySQL、Spring Boot和MyBatis等,以确保系统的稳定性和可扩展性。

作为毕业设计项目,本项目旨在通过实现离线推荐、热门推荐和最新推荐等模块,提升系统的推荐效果和用户体验。同时,项目还将进行深入的统计分析,包括电影评分分布、电影年份分布、不同分段占比、不同评分段的类型占比、不同类型演员前5名称以及电影国家分布占比等,以提供有价值的数据洞察和业务指导。通过本项目的实施,不仅可以锻炼和提升我的专业技能和综合素质,还可以为电影推荐领域的发展做出一定的贡献。

2、项目介绍

本项目是一个基于Hadoop的电影推荐系统,专注于大数据环境下的推荐服务。系统通过MapReduce框架处理电影、评分和用户数据集,利用协同过滤算法为用户生成个性化的电影推荐。项目包含数据存储、大数据分析、Web后端及可视化前端,确保推荐结果的准确性与用户界面的友好性。系统易于部署和运行,同时提供完整的数据文件和SQL文件,便于数据管理和系统维护。其中推荐模块包含:离线推荐,热门推荐,最新推荐等模块!

  • 实现过程

    1. 数据采集

本项目旨在构建数据资产分析系统,通过从Kaggle网站下载电影评分数据集和用户数据集,对数据进行分析和处理。数据集包含电影ID、用户ID、电影海报URL、用户评分及用户名称等信息,为系统提供全面的数据支持。

      1. 数据集介绍

该数据集包含电影推荐所需的基本信息,具体包括用户ID(userid)、电影ID(movieid)、电影海报图片的URL链接(url)以及用户对电影的评分(rating,满分为10分)。该数据集可用于分析用户偏好,进而实现电影推荐功能。

      1. 数据清洗

在数据采集完成后,我们将对下载的数据使用spark技术进行清洗和预处理。这包括去除重复数据、处理缺失值、纠正错误数据等,以确保数据的质量和可靠性。同时,我们还将对数据的格式进行统一,方便后续的数据分析和处理。

    1. 大数据推荐计算

代码和业务介绍:

以下是一个基于MapReduce的电影推荐系统的详细流程,根据提供的步骤组织而成。这个系统将包括数据预处理、计算得分矩阵、计算同现矩阵、矩阵相乘、结果矩阵生成、排序推荐以及将结果写入MySQL数据库。

1. 数据预处理(Format reset)

Step1.run(config, paths);

目的:格式化输入数据,去重。

MapReduce Job:

Mapper:读取输入数据(如用户观看记录),进行简单的数据清洗(如去除无效记录),并输出唯一化的(用户ID, 电影ID)对。

Reducer:合并相同(用户ID, 电影ID)对的记录,确保每个记录唯一。

2. 计算得分矩阵(Score matrix)

Step2.run(config, paths);

目的:根据用户对电影的评分计算得分矩阵。

MapReduce Job:

Mapper:读取格式化后的数据,计算用户对电影的评分总和(或其他得分指标)。

Reducer:合并相同用户ID的评分,生成用户-电影得分矩阵。

3. 计算同现矩阵(Computing co-occurrence matrix)

Step3.run(config, paths);

目的:计算电影之间的同现矩阵,即哪些电影经常被一起观看。

MapReduce Job:

Mapper:读取格式化后的数据,对每对(用户ID, 电影ID)记录,输出所有电影对的同现信息(电影ID1, 电影ID2)。

Reducer:合并相同电影对的同现次数,生成电影-电影同现矩阵。

4. 同现矩阵和得分矩阵相乘(Multiply the co-occurrence matrix and the score matrix)

Step4.run(config, paths);

目的:将同现矩阵和得分矩阵相乘,得到电影推荐的基础矩阵。

MapReduce Job:

Mapper:读取同现矩阵和得分矩阵,进行矩阵相乘的准备工作,输出中间结果。

Reducer:合并中间结果,完成矩阵相乘运算,生成推荐基础矩阵。

5. 结果矩阵相加(Add the matrix after multiplication to obtain the result matrix)

Step5.run(config, paths);

目的:对推荐基础矩阵进行必要的聚合或累加操作,得到最终的推荐矩阵。

MapReduce Job(如果需要累加):

Mapper:读取推荐基础矩阵,进行必要的处理。

Reducer:合并相同电影ID的推荐值,生成最终的推荐矩阵。

6. 排序推荐(Sort recommendation)并写入MySQL

Step6.run(config, paths);

目的:对推荐结果进行排序,并将排序后的推荐列表写入MySQL数据库。

MapReduce Job(通常使用后续处理):

处理步骤:

读取推荐矩阵:从HDFS或其他存储读取最终的推荐矩阵。

排序:对每个用户的推荐电影按推荐值进行排序。

写入MySQL:使用JDBC或其他数据库连接技术,将排序后的推荐列表写入MySQL数据库。

    1. javaWeb可视化

在Java Web项目中,结合HTML、ECharts、Spring Boot和MySQL等技术进行前后台搭建,可以构建一个功能丰富、交互性强的Web应用程序。以下是一个基于这些技术的Java Web前后台搭建的文字描述:

      1. 前端搭建:

HTML: 使用HTML来构建网页的基本结构和内容。通过定义HTML标签和属性,可以创建出各种页面元素,如标题、段落、图片、链接、表格、表单等。

CSS: 通过CSS为网页添加样式和布局。CSS可以控制HTML元素的外观和位置,使得页面更加美观和易于阅读。在项目中,可以将CSS样式定义在单独的文件中,并在HTML中通过链接引入。

JavaScript: 利用JavaScript为网页添加动态交互功能。JavaScript可以处理用户的输入、控制页面的行为、与服务器进行异步通信等。在项目中,可以使用JavaScript库(如jQuery)来简化代码编写,提高效率。

ECharts: 借助ECharts库,为网页添加丰富的图表展示功能。ECharts支持多种图表类型,如折线图、柱状图、饼图等,并且具有高度的可定制性和交互性。通过将ECharts图表嵌入到HTML页面中,可以直观地展示数据和进行数据分析。

      1. 后端搭建:

Spring Boot: 使用Spring Boot框架来构建后端服务。Spring Boot简化了Spring应用的初始搭建和开发过程,通过自动配置和约定优于配置的理念,可以快速开发、测试和部署Spring应用。在项目中,可以利用Spring Boot的Web模块和数据库访问模块,构建出稳定可靠的Web服务。

Java: 采用Java语言进行后端开发。Java是一种广泛使用的编程语言,具有跨平台、面向对象、多线程等特点。在Spring Boot项目中,可以使用Java编写控制器、服务、数据访问对象等组件,实现业务逻辑和数据访问功能。

MySQL: 使用MySQL数据库来存储和管理数据。MySQL是一个开源的关系型数据库管理系统,具有高性能、可扩展性和易用性等优点。在项目中,可以通过JDBC或JPA等持久层框架,实现与MySQL数据库的交互操作。

文件夹结构: 根据项目需求,设计合理的文件夹结构来组织代码和资源文件。例如,可以将源代码放在src目录下的main/java目录下,将资源配置文件放在resources目录下,将静态资源(如图片、CSS、JavaScript文件)放在static目录下,将模板文件(如HTML文件)放在templates目录下。这样可以提高代码的可读性和可维护性。

3、效果图

登录效果图

电影搜索模块

离线与热门推荐功能

代码结构图

资料目录图

资料目录展开图

4、如何获取

获取直达,www.baiyuntu.com


http://www.ppmy.cn/devtools/157828.html

相关文章

git命令行删除远程分支、删除远程提交日志

目录 1、从本地通过命令行删除远程git分支2、删除已 commit 并 push 的记录 1、从本地通过命令行删除远程git分支 git push origin --delete feature/feature_xxx 删除远程分支 feature/feature_xxx 2、删除已 commit 并 push 的记录 git reset --hard 7b5d01xxxxxxxxxx 恢复到…

python连点器

要实现一个用于抖音点赞的鼠标连点工具,可以通过编程或现有软件实现。以下是两种常见方法(但请注意:频繁自动化操作可能违反平台规则,需谨慎使用): 方法 1:使用现成工具(如 AutoClic…

CNN 卷积神经网络处理图片任务 | PyTorch 深度学习实战

前一篇文章,学习率调整策略 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started CNN 卷积神经网络 CNN什么是卷积工作原理深度学习的卷积运算提取特征不同特征核的效果比较卷积核感受野共享权重池化 示例源码 …

DeepSeek与Vue.js组件开发:解锁AI与前端开发的融合密码

前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 Deep…

数据结构 算法时间复杂度和空间复杂度

一、算法好坏的度量 【事前分析法】 算法设计好后,根据算法的设计原理,只要问题规模确定,算法中基本语句执⾏次数和需求资源个数 基本也就确定了。 ⽐如求1 2 3 ... n − 1 n ,可以设计三种算法: 算法A&#xff…

游戏引擎 Unity - Unity 启动(下载 Unity Editor、生成 Unity Personal Edition 许可证)

Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

Spring Boot 和Tomcat的关系

Spring Boot 和 Tomcat 之间的关系可以从多个角度来详细阐述,包括它们的作用、工作原理以及如何协同工作。以下是详细的解析: 1. Spring Boot 的简介 Spring Boot 是一个基于 Spring 框架的开发工具,它的目标是简化 Spring 应用的开发。Spr…

自动驾驶数据集三剑客:nuScenes、nuImages 与 nuPlan 的技术矩阵与生态协同

目录 1、引言 2、主要内容 2.1、定位对比:感知与规划的全维覆盖 2.2、数据与技术特性对比 2.3、技术协同:构建全栈研发生态 2.4、应用场景与评估体系 2.5、总结与展望 3、参考文献 1、引言 随着自动驾驶技术向全栈化迈进,Motional 团…