【WB 深度学习实验管理】使用 PyTorch Lightning 实现高效的图像分类实验跟踪

devtools/2025/2/11 17:09:31/

本文使用到的 Jupyter Notebook 可在GitHub仓库002文件夹找到,别忘了给仓库点个小心心~~~
https://github.com/LFF8888/FF-Studio-Resources
在这里插入图片描述

机器学习项目中,实验跟踪和结果可视化是至关重要的环节。无论是调整超参数、优化模型架构,还是监控训练过程中的性能变化,清晰的记录和直观的可视化都能显著提升开发效率。然而,许多开发者在实际操作中往往忽视了这一点,导致实验结果难以复现,或者在项目协作中出现混乱。今天,笔者将介绍如何利用 PyTorch Lightning 和 Weights & Biases 这一强大的工具组合,轻松构建和训练一个图像分类模型。通过本文,你将学会如何高效地组织数据管道、定义模型架构,并利用 W&B 实现实验跟踪和结果可视化,让每一次实验都清晰可溯,每一次优化都有据可依。

使用 PyTorch Lightning ⚡️ 进行图像分类

我们将使用 PyTorch Lightning 构建一个图像分类管道。我们将遵循这个 风格指南 来提高代码的可读性和可重复性。这里有一个很酷的解释:使用 PyTorch Lightning 进行图像分类。

设置 PyTorch Lightning 和 W&B

对于本教程,我们需要 PyTorch Lightning(这不是很明显吗!)和 Weights and Biases。

!pip install lightning torchvision -q
# 安装 weights and biases
!pip install wandb -qU

你需要这些导入。

import lightning.pytorch as pl
# 你最喜欢的机器学习跟踪工具
from lightning.pytorch.loggers import WandbLoggerimport torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import random_split, DataLoaderfrom torchmetrics import Accuracyfrom torchvision import transforms
from torchvision.datasets import CIFAR10import wandb

现在你需要登录到你的 wandb 账户。

wandb.login()

🔧 DataModule - 我们应得的数据管道

DataModules 是一种将数据相关的钩子与 LightningModule 解耦的方式,以便你可以开发与数据集无关的模型。
它将数据管道组织成一个可共享和可重用的类。一个 datamodule 封装了 PyTorch 中数据处理的五个步骤:

  • 下载 / 分词 / 处理。
  • 清理并(可能)保存到磁盘。
  • 加载到 Dataset 中。
  • 应用转换(旋转、分词等)。
  • 包装到 DataLoader 中。

了解更多关于 datamodules 的信息 这里。让我们为 Cifar-10 数据集构建一个 datamodule。

class CIFAR10DataModule(pl.LightningDataModule):def __init__(self, batch_size, data_dir: str = './'):super().__init__()self.data_dir = data_dirself.batch_size = batch_sizeself.transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])self.num_classes = 10def prepare_data(self):CIFAR10(self.data_dir, train=True, download=True)CIFAR10(self.data_dir, train=False, download=True)def setup(self, stage=None):# 为 dataloaders 分配训练/验证数据集if stage == 'fit' or stage is None:cifar_full = CIFAR10(self.data_dir, train=True, transform=self.transform)self.cifar_train, self.cifar_val = random_split(cifar_full, [45000, 5000])# 为 dataloader(s) 分配测试数据集if stage == 'test' or stage is None:self.cifar_test = CIFAR10(self.data_dir, train=False, transform=self.transform)def train_dataloader(self):return DataLoader(self.cifar_train, batch_size=self.batch_size, shuffle=True)def val_dataloader(self):return DataLoader(self.cifar_val, batch_size=self.batch_size)def test_dataloader(self):return DataLoader(self.cifar_test, batch_size=self.batch_size)

📱 Callbacks

回调是一个独立的程序,可以在项目之间重用。PyTorch Lightning 提供了一些 内置回调,这些回调经常被使用。
了解更多关于 PyTorch Lightning 中的回调 这里。

内置回调

在本教程中,我们将使用 Early Stopping 和 Model Checkpoint 内置回调。它们可以传递给 Trainer

自定义回调

如果你熟悉自定义 Keras 回调,那么在 PyTorch 管道中实现相同功能的能力只是锦上添花。
由于我们正在进行图像分类,能够可视化模型对一些样本图像的预测可能很有帮助。这种形式的回调可以帮助在早期阶段调试模型。

class ImagePredictionLogger(pl.callbacks.Callback):def __init__(self, val_samples, num_samples=32):super().__init__()self.num_samples = num_samplesself.val_imgs, self.val_labels = val_samplesdef on_validation_epoch_end(self, trainer, pl_module):# 将张量带到 CPUval_imgs = self.val_imgs.to(device=pl_module.device)val_labels = self.val_labels.to(device=pl_module.device)# 获取模型预测logits = pl_module(val_imgs)preds = torch.argmax(logits, -1)# 将图像记录为 wandb Imagetrainer.logger.experiment.log({"examples":[wandb.Image(x, caption=f"Pred:{pred}, Label:{y}")for x, pred, y in zip(val_imgs[:self.num_samples],preds[:self.num_samples],val_labels[:self.num_samples])]})

🎺 LightningModule - 定义系统

LightningModule 定义了一个系统,而不是一个模型。在这里,系统将所有研究代码分组到一个类中,使其自包含。LightningModule 将你的 PyTorch 代码组织成 5 个部分:

  • 计算 (__init__)。
  • 训练循环 (training_step)
  • 验证循环 (validation_step)
  • 测试循环 (test_step)
  • 优化器 (configure_optimizers)

因此,可以构建一个与数据集无关的模型,并且可以轻松共享。让我们为 Cifar-10 分类构建一个系统。

class LitModel(pl.LightningModule):def __init__(self, input_shape, num_classes, learning_rate=2e-4):super().__init__()# 记录超参数self.save_hyperparameters()self.learning_rate = learning_rateself.conv1 = nn.Conv2d(3, 32, 3, 1)self.conv2 = nn.Conv2d(32, 32, 3, 1)self.conv3 = nn.Conv2d(32, 64, 3, 1)self.conv4 = nn.Conv2d(64, 64, 3, 1)self.pool1 = torch.nn.MaxPool2d(2)self.pool2 = torch.nn.MaxPool2d(2)n_sizes = self._get_conv_output(input_shape)self.fc1 = nn.Linear(n_sizes, 512)self.fc2 = nn.Linear(512, 128)self.fc3 = nn.Linear(128, num_classes)self.accuracy = Accuracy(task="multiclass", num_classes=num_classes)# 返回从卷积块进入线性层的输出张量的大小。def _get_conv_output(self, shape):batch_size = 1input = torch.autograd.Variable(torch.rand(batch_size, *shape))output_feat = self._forward_features(input)n_size = output_feat.data.view(batch_size, -1).size(1)return n_size# 返回卷积块的特征张量def _forward_features(self, x):x = F.relu(self.conv1(x))x = self.pool1(F.relu(self.conv2(x)))x = F.relu(self.conv3(x))x = self.pool2(F.relu(self.conv4(x)))return x# 将在推理期间使用def forward(self, x):x = self._forward_features(x)x = x.view(x.size(0), -1)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = F.log_softmax(self.fc3(x), dim=1)return xdef training_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = F.nll_loss(logits, y)# 训练指标preds = torch.argmax(logits, dim=1)acc = self.accuracy(preds, y)self.log('train_loss', loss, on_step=True, on_epoch=True, logger=True)self.log('train_acc', acc, on_step=True, on_epoch=True, logger=True)return lossdef validation_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = F.nll_loss(logits, y)# 验证指标preds = torch.argmax(logits, dim=1)acc = self.accuracy(preds, y)self.log('val_loss', loss, prog_bar=True)self.log('val_acc', acc, prog_bar=True)return lossdef test_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = F.nll_loss(logits, y)# 验证指标preds = torch.argmax(logits, dim=1)acc = self.accuracy(preds, y)self.log('test_loss', loss, prog_bar=True)self.log('test_acc', acc, prog_bar=True)return lossdef configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate)return optimizer

🚋 训练和评估

现在我们已经使用 DataModule 组织了数据管道,并使用 LightningModule 组织了模型架构和训练循环,PyTorch Lightning Trainer 为我们自动化了其他所有内容。

Trainer 自动化了以下内容:

  • Epoch 和 batch 迭代
  • 调用 optimizer.step()backwardzero_grad()
  • 调用 .eval(),启用/禁用梯度
  • 保存和加载权重
  • Weights and Biases 日志记录
  • 多 GPU 训练支持
  • TPU 支持
  • 16 位训练支持
dm = CIFAR10DataModule(batch_size=32)
# 要访问 x_dataloader,我们需要调用 prepare_data 和 setup。
dm.prepare_data()
dm.setup()# 自定义 ImagePredictionLogger 回调所需的样本,用于记录图像预测。
val_samples = next(iter(dm.val_dataloader()))
val_imgs, val_labels = val_samples[0], val_samples[1]
val_imgs.shape, val_labels.shape
model = LitModel((3, 32, 32), dm.num_classes)# 初始化 wandb logger
wandb_logger = WandbLogger(project='wandb-lightning', job_type='train')# 初始化 Callbacks
early_stop_callback = pl.callbacks.EarlyStopping(monitor="val_loss")
checkpoint_callback = pl.callbacks.ModelCheckpoint()# 初始化一个 trainer
trainer = pl.Trainer(max_epochs=2,logger=wandb_logger,callbacks=[early_stop_callback,ImagePredictionLogger(val_samples),checkpoint_callback],)# 训练模型 ⚡🚅⚡
trainer.fit(model, dm)# 在保留的测试集上评估模型 ⚡⚡
trainer.test(dataloaders=dm.test_dataloader())# 关闭 wandb run
wandb.finish()

最终想法

我来自 TensorFlow/Keras 生态系统,发现 PyTorch 虽然是一个优雅的框架,但有点让人不知所措。这只是我的个人经验。在探索 PyTorch Lightning 时,我意识到几乎所有让我远离 PyTorch 的原因都得到了解决。以下是我兴奋的快速总结:

  • 过去:传统的 PyTorch 模型定义通常分散在各个地方。模型在某个 model.py 脚本中,训练循环在 train.py 文件中。需要来回查看才能理解管道。
  • 现在:LightningModule 作为一个系统,模型定义与 training_stepvalidation_step 等一起定义。现在它是模块化的且可共享的。
  • 过去:TensorFlow/Keras 最棒的部分是输入数据管道。他们的数据集目录丰富且不断增长。PyTorch 的数据管道曾经是最大的痛点。在普通的 PyTorch 代码中,数据下载/清理/准备通常分散在许多文件中。
  • 现在:DataModule 将数据管道组织成一个可共享和可重用的类。它只是 train_dataloaderval_dataloader(s)、test_dataloader(s) 以及匹配的转换和数据处理/下载步骤的集合。
  • 过去:使用 Keras,可以调用 model.fit 来训练模型,调用 model.predict 来运行推理。model.evaluate 提供了一个简单而有效的测试数据评估。这在 PyTorch 中不是这样。通常会找到单独的 train.pytest.py 文件。
  • 现在:有了 LightningModuleTrainer 自动化了一切。只需调用 trainer.fittrainer.test 来训练和评估模型。
  • 过去:TensorFlow 喜欢 TPU,PyTorch…嗯!
  • 现在:使用 PyTorch Lightning,可以轻松地在多个 GPU 上训练相同的模型,甚至在 TPU 上。哇!
  • 过去:我是回调的忠实粉丝,更喜欢编写自定义回调。像 Early Stopping 这样简单的事情曾经是传统 PyTorch 的讨论点。
  • 现在:使用 PyTorch Lightning,使用 Early Stopping 和 Model Checkpointing 是小菜一碟。我甚至可以编写自定义回调。

🎨 结论和资源

我希望你觉得这份报告有帮助。我鼓励你玩一下代码,并使用你选择的数据集训练一个图像分类器。

以下是一些学习更多关于 PyTorch Lightning 的资源:

  • 逐步演练 - 这是官方教程之一。他们的文档写得非常好,我强烈推荐它作为学习资源。
  • 使用 PyTorch Lightning 与 Weights & Biases - 这是一个快速 colab,你可以通过它学习如何使用 W&B 与 PyTorch Lightning。

http://www.ppmy.cn/devtools/157651.html

相关文章

Linux内核链表

Linux内核链表 去掉了一些硬件级宏定义。 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_LIST_H #define _LINUX_LIST_H#define NOT_SUPPORT_TYPEOF 0 //不支持typeof获取pos类型/*双向链表*/ /** Circular doubly linked list implementation.** Some of the in…

机器学习之数学基础:线性代数、微积分、概率论 | PyTorch 深度学习实战

前一篇文章,使用线性回归模型逼近目标模型 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于 强化学习必修课:引领人工智能新时代【梗直哥瞿炜】 线性代数、微积分、概率论 …

collabora online+nextcloud+mariadb在线文档协助

1、环境 龙蜥os 8.9 docker 2、安装docker dnf -y install dnf-plugins-core dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sed -i shttps://download.docker.comhttps://mirrors.tuna.tsinghua.edu.cn/docker-ce /etc/yum.repos.…

加速汽车软件升级——堆栈刷写技术的应用与挑战

一、背景和挑战 | 背景: 当前汽车市场竞争激烈,多品牌并存,新车发布速度加快,价格逐渐降低,功能日益多样化。随着车辆功能的不断提升与优化,ECU(电子控制单元)的代码量也随之增加&…

【算法】动态规划专题⑥ —— 完全背包问题 python

目录 前置知识进入正题模板 前置知识 【算法】动态规划专题⑤ —— 0-1背包问题 滚动数组优化 完全背包问题是动态规划中的一种经典问题,它与0-1背包问题相似,但有一个关键的区别:在完全背包问题中,每种物品都有无限的数量可用。…

机械冲击剖析 - 第 1 部分 - 柔性杆撞击刚性表面

概括 在本系列讨论的第一部分中,我将探索并验证手工计算与物体掉落到刚性表面上的时间相关响应之间的关系,以及在撞击期间发生的偏转和应力。下面讨论的概念对于理解如何使用 ANSYS Mechanical 设置和解决瞬态结构分析至关重要。 以下是本次讨论中涉及的…

Centos Ollama + Deepseek-r1+Chatbox运行环境搭建

Centos Ollama Deepseek-r1Chatbox运行环境搭建 内容介绍下载ollama在Ollama运行DeepSeek-r1模型使用chatbox连接ollama api 内容介绍 你好! 这篇文章简单讲述一下如何在linux环境搭建 Ollama Deepseek-r1。并在本地安装的Chatbox中进行远程调用 下载ollama 登…

冯诺依曼体系与操作系统

目录 1.冯诺依曼体系结构 认识冯诺依曼体系结构 冯诺依曼体系中为什么要有存储器 2.操作系统 操作系统如何管理硬件 操作系统如何管理软件 1.冯诺依曼体系结构 认识冯诺依曼体系结构 所有的计算机都是由各种各样的硬件组成的,这些硬件可以概括为输入设备、输…