神经网络常见激活函数 4-LeakyReLU函数

devtools/2025/2/8 21:15:45/

LeakyReLU

  • LeakyReLU: Leaky Rectified Linear Unit

函数+导函数

  • LeakyReLU函数
    L e a k y R e L U = { x x > = 0 p x x < 0 p ∈ ( 0 , 1 ) \rm Leaky{ReLU} = \left\{ \begin{array}{} x \quad x>=0 \\ px \quad x<0 \end{array} \right. \quad p \in (0,1) LeakyReLU={xx>=0pxx<0p(0,1)

  • LeakyReLU函数导数
    d d x L e a k y R e L U = { 1 x ≥ 1 p x < 0 p ∈ ( 0 , 1 ) \frac{d}{dx} \rm LeakyReLU = \left\{ \begin{array}{} 1 \quad x \ge1 \\ p \quad x < 0 \end{array} \right. \quad p \in (0,1) dxdLeakyReLU={1x1px<0p(0,1)
    它和 ReLU 函数的不同之处在于,当 x 小于零时,LeakyReLU 函数的导数值并不为 0,而 是常数𝑝,p 一般设置为某较小的数值,如 0.01 或 0.02


函数和导函数图像

  • 画图

    下面是的 p = 0.5 p=0.5 p=0.5 时候的情况,请注意,p 一般设置为较小值。

    import numpy as np
    from matplotlib import pyplot as plt# 定义 PReLU 函数
    def prelu(x, alpha=0.25):return np.where(x < 0, alpha * x, x)# 定义 PReLU 的导数
    def prelu_derivative(x, alpha=0.25):d = np.where(x < 0, alpha, 1)return d# 生成数据
    x = np.linspace(-2, 2, 1000)
    alpha = 0.5  # 可以调整 alpha 的值
    y = prelu(x, alpha)
    y1 = prelu_derivative(x, alpha)# 绘制图形
    plt.figure(figsize=(12, 8))
    ax = plt.gca()
    plt.plot(x, y, label='PReLU')
    plt.plot(x, y1, label='Derivative')
    plt.title(f'PReLU (alpha={alpha}) and Partial Derivative')# 设置上边和右边无边框
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')# 设置 x 坐标刻度数字或名称的位置
    ax.xaxis.set_ticks_position('bottom')# 设置边框位置
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))plt.legend(loc=2)
    plt.show()
    

    image-20250122173136461

    LeakyReLU 函数有效的克服了 ReLU 函数的缺陷,使用也比较广泛。


优缺点

  • Leaky Relu 的优点(相对 ReLU的改进)

    1. 与 ReLU 函数相比,Leaky ReLU 通过在负半轴引入一个小的线性分量(如 0.01x)来调整负值的梯度问题;这有助于扩大 ReLU 函数的范围,通常斜率 p 的值为 0.01 左右;函数范围是负无穷到正无穷。
    2. Leaky ReLU 激活函数通过在负半轴添加一个小的正斜率(如 0.01),使得负轴的信息不会全部丢失。通过这种方式,Leaky ReLU 激活函数可以确保模型训练过程中神经元的权重在输入小于 0 的情况下依然会得到更新。
    3. 不会出现 Dead ReLU 问题,但关于输入函数 f(x)的部分仍然容易出现梯度爆炸的情况,因此必要时可以搭配 Sigmoid 或 Tanh 使用。
  • Leaky Relu 的缺点

    1. 经典(以及广泛使用的)ReLU 激活函数的变体,带泄露修正线性单元(Leaky ReLU)的输出对负值输入有很小的坡度。由于导数总是不为零,这能减少静默神经元的出现,允许基于梯度的学习(虽然会很慢)。
    2. 从理论上讲,Leaky ReLU 具有 ReLU 的所有优点,而且 Dead ReLU 不会有任何问题,但在实际应用中,尚未完全证明 Leaky ReLU 总是比 ReLU 更好。

pytorchLeakyReLU_100">pytorch中的LeakyReLU函数

  • 代码

    import torchx = torch.randn(2)
    f = torch.nn.LeakyReLU(negative_slope=0.1) # negative_slope是个常数,即负值部分的斜率leakyRelu_x = f(x)print(f"x: \n{x}")
    print(f"leakyRelu_x:\n{leakyRelu_x}")"""输出"""
    x: 
    tensor([-1.7098,  0.3351])
    leakyRelu_x:
    tensor([-0.1710,  0.3351])
    

    为了便于演示,这里的 p设置成了0.1,即代码中的negative_slope,我们可以看到输出,当x小于0 的时候,leakyRelu_x的结果被乘以0.1。


tensorflow 中的LeakyReLU函数

  • 代码

    python: 3.10.9

    tensorflow: 2.18.0

    import tensorflow as tfalpha = 0.1  # 定义 LeakyReLU 函数,alpha 是负值部分的斜率
    f = lambda x: tf.nn.leaky_relu(x, alpha=alpha)x = tf.random.normal([2])
    leaky_relu_x = f(x)print(f"x: \n{x}")
    print(f"leaky_relu_x:\n{leaky_relu_x}")"""输出"""
    x: 
    [-0.733668    0.06844683]
    leaky_relu_x:
    [-0.07336681  0.06844683]
    

    同上,这里的 p设置成了0.1,即代码中的alpha,我们可以看到输出,当x小于0 的时候,leakyRelu_x的结果被乘以0.1。



http://www.ppmy.cn/devtools/157177.html

相关文章

DeepSeek让 Obsidian 更强大:Text generator与 Copilot 使用指南

DeepSeek让 Obsidian 更强大&#xff1a;Text generator与 Copilot 使用指南 Text generator 使用指南Copilot 使用指南 Obsidian作为新一代知识管理工具&#xff0c;凭借本地化存储、双链图谱和开放生态正在改变学习与创作方式&#xff0c;以下是结合DeepSeek大模型的Text Gen…

【实战篇】Idea 集成主流 AI 插件的方法实战

家人们,今天必须来给大家分享一个超实用的干货,那就是如何在 Idea 中集成各种主流 AI 插件!这简直就是提升咱们开发效率的超级神器,不管你是刚入门的编程小白,还是已经在代码世界里摸爬滚打好多年的资深程序员,掌握了这些方法,都能让你的代码编写过程变得轻松又高效,就…

WGCLOUD监控系统部署教程

官网地址&#xff1a;下载WGCLOUD安装包 - WGCLOUD官网 第一步、环境配置 #安装jdk 1、安装 EPEL 仓库&#xff1a; sudo yum install -y epel-release 2、安装 OpenJDK 11&#xff1a; sudo yum install java-11-openjdk-devel 3、如果成功&#xff0c;你可以通过运行 java …

用 Rust 处理 UTF-8 字符串:从创建到复杂操作的全解析

什么是字符串&#xff1f; 在 Rust 中&#xff0c;核心语言只内置了一个字符串类型 —— 字符串切片&#xff08;str&#xff09;&#xff0c;通常以借用形式 &str 出现。字符串字面量就属于这种类型&#xff0c;它们存储在程序的二进制文件中。 而 String 类型则是由标准…

windows安装linux子系统【ubuntu】操作步骤

1.在windows系统中开启【适用于Linux的Windows子系统】 控制面板—程序—程序和功能—启用或关闭Windows功能—勾选适用于Linux的Windows子系统–确定 2.下载安装Linux Ubuntu 22.04.5 LTS系统 Ununtu下载链接 3.安装完Ununtu系统后更新系统 sudo apt update4.进入/usr/l…

Android 单例模式:实现可复用数据存储

引言 在 Java 开发中&#xff0c;我们经常会遇到需要在整个应用程序中共享数据的场景。例如&#xff0c;配置信息、缓存数据等&#xff0c;这些数据需要在不同的模块或类中被访问和使用。为了确保数据的一致性和避免重复创建&#xff0c;我们可以使用单例模式来实现一个可复用的…

web3D交互展示是什么?应用场景有哪些?

Web3D交互展示是利用Web3D技术&#xff0c;在网页上实现3D产品的全方位交互展示。用户可自由旋转、缩放及移动产品视角&#xff0c;从而深入了解产品的每一处细节与尺寸信息。以下是关于Web3D交互展示的详细解释&#xff1a; 一、定义与原理 定义&#xff1a;Web3D交互展示是…

el-table组件样式如何二次修改?

文章目录 前言一、去除全选框按钮样式二、表头颜色的修改 前言 ElementUI中的组件el-table表格组件提供了丰富的样式&#xff0c;有一个全选框的el-table组件&#xff0c;提供了全选框和多选。 一、去除全选框按钮样式 原本默认是有全选框的。假如有一些开发者&#xff0c;因…