如何优化垃圾回收机制?

devtools/2025/2/7 4:31:25/

垃圾回收机制

掌握 GC 算法之前,我们需要先弄清楚 3 个问题。第一,回收发生在哪里?第二,对象在
什么时候可以被回收?第三,如何回收这些对象?

回收发生在哪里?

    JVM 的内存区域中,程序计数器、虚拟机栈和本地方法栈这 3 个区域是线程私有的,随着
线程的创建而创建,销毁而销毁;栈中的栈帧随着方法的进入和退出进行入栈和出栈操作,
每个栈帧中分配多少内存基本是在类结构确定下来的时候就已知的,因此这三个区域的内存
分配和回收都具有确定性。
    那么垃圾回收的重点就是关注堆和方法区中的内存了,堆中的回收主要是对象的回收,方法
区的回收主要是废弃常量和无用的类的回收。

.对象在什么时候可以被回收?

那 JVM 又是怎样判断一个对象是可以被回收的呢? 一般一个对象不再被引用,就代表该对
象可以被回收。 目前有以下两种算法可以判断该对象是否可以被回收。
引用计数算法 这种算法是通过一个对象的引用计数器来判断该对象是否被引用了。每当对
象被引用,引用计数器就会加 1;每当引用失效,计数器就会减 1。当对象的引用计数器的
值为 0 时,就说明该对象不再被引用,可以被回收了。这里强调一点,虽然引用计数算法
的实现简单,判断效率也很高,但它存在着对象之间相互循环引用的问题。
可达性分析算法 GC Roots 是该算法的基础,GC Roots 是所有对象的根对象,在 JVM
加载时,会创建一些普通对象引用正常对象。这些对象作为正常对象的起始点,在垃圾回收
时,会从这些 GC Roots 开始向下搜索,当一个对象到 GC Roots 没有任何引用链相连
时,就证明此对象是不可用的。目前 HotSpot 虚拟机采用的就是这种算法
以上两种算法都是通过引用来判断对象是否可以被回收。在 JDK 1.2 之后,Java 对引用的
概念进行了扩充,将引用分为了以下四种:

GC 算法

JVM 提供了不同的回收算法来实现这一套回收机制,通常垃圾收集器的回收算法可以分为
以下几种:
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现,JDK1.7
update14 之后 Hotspot 虚拟机所有的回收器整理如下(以下为服务端垃圾收集器):
其实在 JVM 规范中并没有明确 GC 的运作方式,各个厂商可以采用不同的方式实现垃圾收
集器。 我们可以通过 JVM 工具查询当前 JVM 使用的垃圾收集器类型, 首先通过 ps 命令查
询出经常 ID,再通过 jmap -heap ID 查询出 JVM 的配置信息,其中就包括垃圾收集器的
设置类型。

查看 & 分析 GC 日志

已知了性能衡量指标,现在我们需要通过工具查询 GC 相关日志,统计各项指标的信息。
首先,我们需要通过 JVM 参数预先设置 GC 日志,通常有以下几种 JVM 参数设置:
java">1 -XX:+PrintGC 输出 GC 日志
2 -XX:+PrintGCDetails 输出 GC 的详细日志
3 -XX:+PrintGCTimeStamps 输出 GC 的时间戳(以基准时间的形式)
4 -XX:+PrintGCDateStamps 输出 GC 的时间戳(以日期的形式,如 2013-05-04T21:53:59.234+0800)
5 -XX:+PrintHeapAtGC 在进行 GC 的前后打印出堆的信息
6 -Xloggc:../logs/gc.log 日志文件的输出路径

笔者推荐文章

  • 敏捷架构的 TOGAF 层次化迭代建模
  • 架构规划之如何划分任务边界?
  • 资源下载 技术架构,业务架构,数据架构,企业架构,行业技术方案 TOGAF | 跟着Byte学架构
  • 定制化企业架构元模型-CSDN博客
  • G1相对于CMS的的优势-CSDN博客


http://www.ppmy.cn/devtools/156713.html

相关文章

DeepSeek:全栈开发者视角下的AI革命者

目录​​​​​​​ DeepSeek:全栈开发者视角下的AI革命者 写在前面 一、DeepSeek的诞生与定位 二、DeepSeek技术架构的颠覆性突破 1、解构算力霸权:从MoE架构到内存革命 2、多模态扩展的技术纵深 3、算法范式的升维重构 4、重构AI竞争规则 三、…

文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?

【中风醒脑液(FYTF-919)临床试验解读:有效还是无效?】 在发表于 The Lancet (2024 年 11 月 30 日,第 404 卷)的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral pr…

Scala语言的安全开发

Scala语言的安全开发 引言 在现代软件开发中,安全性是一个不可忽视的重要因素。特别是在处理敏感数据和用户信息时,确保代码的安全性尤为重要。Scala语言以其强大的功能和灵活性,在大数据处理和并发编程中受到了广泛的关注与应用。然而&…

java后端开发面试常问

面试常问问题 1 spring相关 &#xff08;1&#xff09;Transactional失效的场景 <1> Transactional注解默认只会回滚运行时异常&#xff08;RuntimeException&#xff09;&#xff0c;如果方法中抛出了其他异常&#xff0c;则事务不会回滚&#xff08;数据库数据仍然插…

电控三周速成计划参考

第1周&#xff1a;基础搭建与GPIO控制 学习目标&#xff1a;建立开发环境&#xff0c;掌握最基础的硬件控制能力 每日学习&#xff08;2-3小时&#xff09;&#xff1a; 环境搭建&#xff08;2天&#xff09; 安装Keil MDK-ARM STM32CubeMX使用CubeMX创建第一个工程&#xf…

新版231普通阿里滑块 自动化和逆向实现 分析

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 逆向过程 补环境逆向 部分补环境 …

陷入闭包:理解 React 状态管理中的怪癖

TLDR 闭包就像函数随身携带的背包&#xff0c;包含它们创建时的数据React 组件使用闭包来记住它们的状态和属性过时的闭包可能导致状态更新不如预期时的错误函数式更新提供了一个可靠的方式来处理最新状态 简介 你是否曾经疑惑过&#xff0c;为什么有时你的 React 状态更新不…

机器学习,深度学习,神经网络,深度神经网络

人工智能包含机器学习&#xff0c;机器学习包含深度学习&#xff08;是其中比较重要的分支&#xff09;。深度学习源自于人工神经网络的研究&#xff0c;但是并不完全等于传统神经网络。 神经网络与深度神经网络的区别在于隐藏层级&#xff0c;通常两层或两层以上隐藏层的网络叫…