关于图像锐化的一份介绍

devtools/2025/2/6 2:08:08/

在这篇文章中,我将介绍有关图像锐化有关的知识,具体包括锐化的简单介绍、一阶锐化与二阶锐化等方面内容。

一、锐化

1.1 概念 

锐化(sharpening)就是指将图象中灰度差增大的方法,一次来增强物体的轮廓与边缘。因为发生锐化的地方都是发生灰度差突变的地方,所以锐化算法都是基于微分作用。

1.2 作用

一般来说,锐化增强灰度差,除了使物体与轮廓的细节增强后,它还是重要的预处理的一步,为了方便之后的物体检测与识别等。

二、一阶微分锐化方法

一阶微分锐化的计算公式十分简单,具体如下:

f'(x,y)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}

2.1 单方向一阶锐化

单方向的一阶锐化即是对某特定方向的边缘信息进行增强。通常,我们通过模板来实现,比如:

H=\begin{bmatrix} 1 & 2 & 1\\ 0 & 0&0 \\ -1 &-2 &-1 \end{bmatrix}

代码与处理后图像分别为:(代码中为了增强最后锐化后的效果,采用了垂直方向的锐化,而非上述模板中水平方向的锐化)

python">import cv2
import numpy as np
import matplotlib.pyplot as pltimage = cv2.imread(r'C:\Users\20349\Desktop\picture\tree.png')# 定义单方向一阶微分锐化模板
kernel = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1]])# 应用卷积核到图像上
sharpened_image = cv2.filter2D(image, -1, kernel)image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
sharpened_image_rgb = cv2.cvtColor(sharpened_image, cv2.COLOR_BGR2RGB)fig, axes = plt.subplots(1, 2)# 显示原图和处理后的图像
axes[0].imshow(image_rgb)
axes[0].set_title('Original Image')
axes[0].axis('off')  # 不显示坐标轴axes[1].imshow(sharpened_image_rgb)
axes[1].set_title('Sharpened Image')
axes[1].axis('off')  # 不显示坐标轴plt.show()

具体关于实现锐化部分的函数类似地可以写成代码如下:

python">def filter_2d(image, kernel):# 获取图像和卷积核的尺寸image_height, image_width, *image_channels = image.shapekernel_height, kernel_width = kernel.shape# 确保卷积核是奇数尺寸,以便有中心点if kernel_height % 2 == 0 or kernel_width % 2 == 0:raise ValueError("卷积核的宽高都应该是奇数")# 计算填充大小pad_size_height = kernel_height // 2pad_size_width = kernel_width // 2# 创建一个带有边框填充的图像副本,使用零填充padded_image = cv2.copyMakeBorder(image, pad_size_height, pad_size_height, pad_size_width, pad_size_width,cv2.BORDER_CONSTANT)# 如果图像是彩色图像,则需要分别处理每个通道if len(image_channels) > 0:channels = cv2.split(padded_image)output_channels = []for channel in channels:output_channel = np.zeros_like(channel)# 对于每个像素位置应用卷积for y in range(pad_size_height, image_height + pad_size_height):for x in range(pad_size_width, image_width + pad_size_width):region = channel[y - pad_size_height:y + pad_size_height + 1,x - pad_size_width:x + pad_size_width + 1]output_channel[y - pad_size_height, x - pad_size_width] = (region * kernel).sum()output_channels.append(output_channel)output_image = cv2.merge(output_channels)else:# 对于灰度图像直接处理output_image = np.zeros_like(image)for y in range(pad_size_height, image_height + pad_size_height):for x in range(pad_size_width, image_width + pad_size_width):region = padded_image[y - pad_size_height:y + pad_size_height + 1,x - pad_size_width:x + pad_size_width + 1]output_image[y - pad_size_height, x - pad_size_width] = (region * kernel).sum()return output_image

(该函数代码与实际调用的函数代码略有不同)

此外,在进行了上述步骤后进行取绝对值操作,可以增强对比度,避免负值影响问题等。 

2.2 无方向一阶锐化

通过观察处理结果,我们发现单方向一阶微分锐化对于矩形特征的物体处理效果优秀,但对于不规则的物体处理效果有所欠缺,此时就需要无方向一阶微分锐化。

交叉微分锐化

首先是交叉微分锐化,其表达式为:

g(i,j)=|f(i+1,j+1)-f(i,j)|+|f(i+1,j)-f(i,j+1)|

该方法可以用代码表示为如下,以及其处理结果也如下所示:

python">def roberts_cross(image):image_height, image_width = image.shapeoutput_image = np.zeros_like(image)# 定义Roberts算子kernel_x = np.array([[1, 0], [0, -1]])kernel_y = np.array([[0, -1], [1, 0]])# 对每个像素应用Roberts算子for y in range(0, image_height - 1):for x in range(0, image_width - 1):region = image[y:y + 2, x:x + 2]gradient_x = (region * kernel_x).sum()gradient_y = (region * kernel_y).sum()output_image[y, x] = np.sqrt(gradient_x ** 2 + gradient_y ** 2)# 归一化output_image = cv2.normalize(output_image, None, 0, 255, cv2.NORM_MINMAX)return output_image.astype(np.uint8)

Sobel锐化

关于Sobel锐化可以用表达式表示为:

g(i,j)=(d^2 _x(i,j)+d^2 _y(i,j))^{\frac{1}{2}}

其中:

d_x =\begin{bmatrix} -1 &0 &1 \\ -2&0 &2 \\ -1&0 &1 \end{bmatrix}        d_y = \begin{bmatrix} -1 & -2 &1 \\ 0&0 &0 \\ 1 &2 &1 \end{bmatrix}

代码以及结果分别为:

python">def sobel_sharpen(image):image_float = image.astype(float)# 定义Sobel算子kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])kernel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])# 计算x方向和y方向的梯度gradient_x = cv2.filter2D(image_float, -1, kernel_x)gradient_y = cv2.filter2D(image_float, -1, kernel_y)# 合并两个方向的梯度gradient_magnitude = np.sqrt(gradient_x ** 2 + gradient_y ** 2)sharpened_image = image_float + gradient_magnitudesharpened_image = np.clip(sharpened_image, 0, 255)return sharpened_image.astype(np.uint8)

Prewitt锐化

如果将刚才的Sobel算法中核进行修改即可得到Prewitt算法,具体Prewitt算法的核为:

d_x =\begin{bmatrix} -1 & 0 &1 \\ -1& 0& 1\\ -1& 0& 1 \end{bmatrix}        d_y = \begin{bmatrix} -1& -1 & -1\\ 0 & 0 &0 \\ 1& 1 &1 \end{bmatrix}

其处理结果为:

三、二阶微分锐化方法

Laplacin算法

关于Laplacin算法的模板为:

H_1 = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 &-1 \\ 0 & -1 & 0 \end{bmatrix}

这个模板可以通过如下的表达式推导得出:

\triangledown ^2 f = \frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2}

(具体推导过程省略)

那么我们将这个模板用于锐化后得到结果为:

接着,我们为了增强最后Laplacian微分锐化的效果,我们可以对于刚才的模板进行修改,比如:

H_2=\begin{bmatrix} -1 &-1 &-1 \\ -1 & 8 & -1\\ -1 & -1 & -1 \end{bmatrix}

但要注意在修改这个模板时要注意配平,不然会出现问题。

刚才这个模板得到的结果如下:

为了展示效果,这里再提供一个未配平的模板,如下:

 H_2=\begin{bmatrix} -1 &-1 &-1 \\ -1 & 9 & -1\\ -1 & -1 & -1 \end{bmatrix}

运用这个模板处理后的结果如下:(可以发现这个处理结果十分接近原图)

Wallis算法

如果对于刚才的这些模板中加入对数的处理,就可以得到Wallis算法,这种算法更接近人眼的视觉特性,得到的结果在暗区也可以很好处理,下面是一个模板举例:

H_2=\begin{bmatrix} -\frac{1}{8} &-\frac{1}{8} &-\frac{1}{8} \\-\frac{1}{8}& 1 & -\frac{1}{8}\\ -\frac{1}{8}& -\frac{1}{8} & -\frac{1}{8} \end{bmatrix}

处理结果如下:

 此上


http://www.ppmy.cn/devtools/156420.html

相关文章

【JavaScript】Web API事件流、事件委托

目录 1.事件流 1.1 事件流和两个阶段说明 1.2 事件捕获 1.3 事件冒泡 1.4 阻止冒泡 1.5 解绑事件 L0 事件解绑 L2 事件解绑 鼠标经过事件的区别 两种注册事件的区别 2.事件委托 案例 tab栏切换改造 3.其他事件 3.1 页面加载事件 3.2 页面滚动事件 3.2 页面滚…

Go学习:类型转换需注意的点 以及 类型别名

目录 1. 类型转换 2. 类型别名 1. 类型转换 在从前的学习中,知道布尔bool类型变量只有两种值true或false,C/C、Python、JAVA等编程语言中,如果将布尔类型bool变量转换为整型int变量,通常采用 “0为假,非0为真”的方…

【狂热算法篇】探秘图论之Dijkstra 算法:穿越图的迷宫的最短路径力量(通俗易懂版)

羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C/C题海汇总,AI学习,c的不归之路,等方面的知识,羑悻的小杀马特.关注算法,c,c语言,青少年编程领域.https://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_82648291?typebbshttps://blog.csdn.net/2401_8264829…

MySQL下载安装配置(超级超级入门级)

一、下载MySQL MySQL是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,属于 Oracle 旗下产品。 MySQL官网下载地址:https://dev.mysql.com/downloads/mysql/ 打开官网,现在最新是9.0版本,我们这里选择8.03版本…

Pluto固件编译笔记

前段时间我已经做到在电脑上交叉编译一个简单的c/c程序,然后复制到pluto上运行。 要做到这一点,其实参考adi pluto官网的wiki就能做到了。 但这样有几个问题,只能做到简易程序,如果程序复杂,要调用更多库而SYSROOT里…

[权限提升] Windows 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权

关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01:Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的,所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…

试用ChatGPT开发一个大语言模型聊天App

参考官方文档,安装android studio https://developer.android.com/studio/install?hlzh-cn 参考这个添加permission权限: https://blog.csdn.net/qingye_love/article/details/14452863 参考下面链接完成Android Studio 给项目添加 gradle 依赖 ht…

在vue中使用jsx

在jsx中定义事件的语法和在vue template里不同: xxx 要改成 onXxx包裹事件内容的引号要改成大括号带参数的要用bind定义,否则会直接执行