14 2D矩形模块( rect.rs)

devtools/2025/2/3 15:31:51/

一、 rect.rs源码

rust">// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.use super::UnknownUnit;
use crate::box2d::Box2D;
use crate::num::*;
use crate::point::Point2D;
use crate::scale::Scale;
use crate::side_offsets::SideOffsets2D;
use crate::size::Size2D;
use crate::vector::Vector2D;#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use num_traits::{Float, NumCast};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};use core::borrow::Borrow;
use core::cmp::PartialOrd;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Range, Sub};/// A 2d Rectangle optionally tagged with a unit.
///
/// # Representation
///
/// `Rect` is represented by an origin point and a size.
///
/// See [`Box2D`] for a rectangle represented by two endpoints.
///
/// # Empty rectangle
///
/// A rectangle is considered empty (see [`is_empty`]) if any of the following is true:
/// - it's area is empty,
/// - it's area is negative (`size.x < 0` or `size.y < 0`),
/// - it contains NaNs.
///
/// [`is_empty`]: Self::is_empty
#[repr(C)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde",serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
)]
pub struct Rect<T, U> {pub origin: Point2D<T, U>,pub size: Size2D<T, U>,
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Rect<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (origin, size) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Rect { origin, size })}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Rect<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Rect<T, U> {}impl<T: Hash, U> Hash for Rect<T, U> {fn hash<H: Hasher>(&self, h: &mut H) {self.origin.hash(h);self.size.hash(h);}
}impl<T: Copy, U> Copy for Rect<T, U> {}impl<T: Clone, U> Clone for Rect<T, U> {fn clone(&self) -> Self {Self::new(self.origin.clone(), self.size.clone())}
}impl<T: PartialEq, U> PartialEq for Rect<T, U> {fn eq(&self, other: &Self) -> bool {self.origin.eq(&other.origin) && self.size.eq(&other.size)}
}impl<T: Eq, U> Eq for Rect<T, U> {}impl<T: fmt::Debug, U> fmt::Debug for Rect<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {write!(f, "Rect(")?;fmt::Debug::fmt(&self.size, f)?;write!(f, " at ")?;fmt::Debug::fmt(&self.origin, f)?;write!(f, ")")}
}impl<T: Default, U> Default for Rect<T, U> {fn default() -> Self {Rect::new(Default::default(), Default::default())}
}impl<T, U> Rect<T, U> {/// Constructor.#[inline]pub const fn new(origin: Point2D<T, U>, size: Size2D<T, U>) -> Self {Rect { origin, size }}
}impl<T, U> Rect<T, U>
whereT: Zero,
{/// Constructor, setting all sides to zero.#[inline]pub fn zero() -> Self {Rect::new(Point2D::origin(), Size2D::zero())}/// Creates a rect of the given size, at offset zero.#[inline]pub fn from_size(size: Size2D<T, U>) -> Self {Rect {origin: Point2D::zero(),size,}}
}impl<T, U> Rect<T, U>
whereT: Copy + Add<T, Output = T>,
{#[inline]pub fn min(&self) -> Point2D<T, U> {self.origin}#[inline]pub fn max(&self) -> Point2D<T, U> {self.origin + self.size}#[inline]pub fn max_x(&self) -> T {self.origin.x + self.size.width}#[inline]pub fn min_x(&self) -> T {self.origin.x}#[inline]pub fn max_y(&self) -> T {self.origin.y + self.size.height}#[inline]pub fn min_y(&self) -> T {self.origin.y}#[inline]pub fn width(&self) -> T {self.size.width}#[inline]pub fn height(&self) -> T {self.size.height}#[inline]pub fn x_range(&self) -> Range<T> {self.min_x()..self.max_x()}#[inline]pub fn y_range(&self) -> Range<T> {self.min_y()..self.max_y()}/// Returns the same rectangle, translated by a vector.#[inline]#[must_use]pub fn translate(&self, by: Vector2D<T, U>) -> Self {Self::new(self.origin + by, self.size)}#[inline]pub fn to_box2d(&self) -> Box2D<T, U> {Box2D {min: self.min(),max: self.max(),}}
}impl<T, U> Rect<T, U>
whereT: Copy + PartialOrd + Add<T, Output = T>,
{/// Returns `true` if this rectangle contains the point. Points are considered/// in the rectangle if they are on the left or top edge, but outside if they/// are on the right or bottom edge.#[inline]pub fn contains(&self, p: Point2D<T, U>) -> bool {self.to_box2d().contains(p)}#[inline]pub fn intersects(&self, other: &Self) -> bool {self.to_box2d().intersects(&other.to_box2d())}
}impl<T, U> Rect<T, U>
whereT: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{#[inline]pub fn intersection(&self, other: &Self) -> Option<Self> {let box2d = self.to_box2d().intersection_unchecked(&other.to_box2d());if box2d.is_empty() {return None;}Some(box2d.to_rect())}
}impl<T, U> Rect<T, U>
whereT: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{#[inline]#[must_use]pub fn inflate(&self, width: T, height: T) -> Self {Rect::new(Point2D::new(self.origin.x - width, self.origin.y - height),Size2D::new(self.size.width + width + width,self.size.height + height + height,),)}
}impl<T, U> Rect<T, U>
whereT: Copy + Zero + PartialOrd + Add<T, Output = T>,
{/// Returns `true` if this rectangle contains the interior of `rect`. Always/// returns `true` if `rect` is empty, and always returns `false` if `rect` is/// nonempty but this rectangle is empty.#[inline]pub fn contains_rect(&self, rect: &Self) -> bool {rect.is_empty()|| (self.min_x() <= rect.min_x()&& rect.max_x() <= self.max_x()&& self.min_y() <= rect.min_y()&& rect.max_y() <= self.max_y())}
}impl<T, U> Rect<T, U>
whereT: Copy + Zero + PartialOrd + Add<T, Output = T> + Sub<T, Output = T>,
{/// Calculate the size and position of an inner rectangle.////// Subtracts the side offsets from all sides. The horizontal and vertical/// offsets must not be larger than the original side length./// This method assumes y oriented downward.pub fn inner_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {let rect = Rect::new(Point2D::new(self.origin.x + offsets.left, self.origin.y + offsets.top),Size2D::new(self.size.width - offsets.horizontal(),self.size.height - offsets.vertical(),),);debug_assert!(rect.size.width >= Zero::zero());debug_assert!(rect.size.height >= Zero::zero());rect}
}impl<T, U> Rect<T, U>
whereT: Copy + Add<T, Output = T> + Sub<T, Output = T>,
{/// Calculate the size and position of an outer rectangle.////// Add the offsets to all sides. The expanded rectangle is returned./// This method assumes y oriented downward.pub fn outer_rect(&self, offsets: SideOffsets2D<T, U>) -> Self {Rect::new(Point2D::new(self.origin.x - offsets.left, self.origin.y - offsets.top),Size2D::new(self.size.width + offsets.horizontal(),self.size.height + offsets.vertical(),),)}
}impl<T, U> Rect<T, U>
whereT: Copy + Zero + PartialOrd + Sub<T, Output = T>,
{/// Returns the smallest rectangle defined by the top/bottom/left/right-most/// points provided as parameter.////// Note: This function has a behavior that can be surprising because/// the right-most and bottom-most points are exactly on the edge/// of the rectangle while the [`Rect::contains`] function is has exclusive/// semantic on these edges. This means that the right-most and bottom-most/// points provided to [`Rect::from_points`] will count as not contained by the rect./// This behavior may change in the future.////// See [`Box2D::from_points`] for more details.pub fn from_points<I>(points: I) -> SelfwhereI: IntoIterator,I::Item: Borrow<Point2D<T, U>>,{Box2D::from_points(points).to_rect()}
}impl<T, U> Rect<T, U>
whereT: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{/// Linearly interpolate between this rectangle and another rectangle.#[inline]pub fn lerp(&self, other: Self, t: T) -> Self {Self::new(self.origin.lerp(other.origin, t),self.size.lerp(other.size, t),)}
}impl<T, U> Rect<T, U>
whereT: Copy + One + Add<Output = T> + Div<Output = T>,
{pub fn center(&self) -> Point2D<T, U> {let two = T::one() + T::one();self.origin + self.size.to_vector() / two}
}impl<T, U> Rect<T, U>
whereT: Copy + PartialOrd + Add<T, Output = T> + Sub<T, Output = T> + Zero,
{#[inline]pub fn union(&self, other: &Self) -> Self {self.to_box2d().union(&other.to_box2d()).to_rect()}
}impl<T, U> Rect<T, U> {#[inline]pub fn scale<S: Copy>(&self, x: S, y: S) -> SelfwhereT: Copy + Mul<S, Output = T>,{Rect::new(Point2D::new(self.origin.x * x, self.origin.y * y),Size2D::new(self.size.width * x, self.size.height * y),)}
}impl<T: Copy + Mul<T, Output = T>, U> Rect<T, U> {#[inline]pub fn area(&self) -> T {self.size.area()}
}impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {#[inline]pub fn is_empty(&self) -> bool {self.size.is_empty()}
}impl<T: Copy + Zero + PartialOrd, U> Rect<T, U> {#[inline]pub fn to_non_empty(&self) -> Option<Self> {if self.is_empty() {return None;}Some(*self)}
}impl<T: Copy + Mul, U> Mul<T> for Rect<T, U> {type Output = Rect<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {Rect::new(self.origin * scale, self.size * scale)}
}impl<T: Copy + MulAssign, U> MulAssign<T> for Rect<T, U> {#[inline]fn mul_assign(&mut self, scale: T) {*self *= Scale::new(scale);}
}impl<T: Copy + Div, U> Div<T> for Rect<T, U> {type Output = Rect<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {Rect::new(self.origin / scale.clone(), self.size / scale)}
}impl<T: Copy + DivAssign, U> DivAssign<T> for Rect<T, U> {#[inline]fn div_assign(&mut self, scale: T) {*self /= Scale::new(scale);}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Rect<T, U1> {type Output = Rect<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {Rect::new(self.origin * scale.clone(), self.size * scale)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Rect<T, U> {#[inline]fn mul_assign(&mut self, scale: Scale<T, U, U>) {self.origin *= scale.clone();self.size *= scale;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Rect<T, U2> {type Output = Rect<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {Rect::new(self.origin / scale.clone(), self.size / scale)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Rect<T, U> {#[inline]fn div_assign(&mut self, scale: Scale<T, U, U>) {self.origin /= scale.clone();self.size /= scale;}
}impl<T: Copy, U> Rect<T, U> {/// Drop the units, preserving only the numeric value.#[inline]pub fn to_untyped(&self) -> Rect<T, UnknownUnit> {Rect::new(self.origin.to_untyped(), self.size.to_untyped())}/// Tag a unitless value with units.#[inline]pub fn from_untyped(r: &Rect<T, UnknownUnit>) -> Rect<T, U> {Rect::new(Point2D::from_untyped(r.origin),Size2D::from_untyped(r.size),)}/// Cast the unit#[inline]pub fn cast_unit<V>(&self) -> Rect<T, V> {Rect::new(self.origin.cast_unit(), self.size.cast_unit())}
}impl<T: NumCast + Copy, U> Rect<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using [`round`], [`round_in`] or [`round_out`] before casting.////// [`round`]: Self::round/// [`round_in`]: Self::round_in/// [`round_out`]: Self::round_out#[inline]pub fn cast<NewT: NumCast>(&self) -> Rect<NewT, U> {Rect::new(self.origin.cast(), self.size.cast())}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating point to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using [`round`], [`round_in`] or [`round_out` before casting.////// [`round`]: Self::round/// [`round_in`]: Self::round_in/// [`round_out`]: Self::round_outpub fn try_cast<NewT: NumCast>(&self) -> Option<Rect<NewT, U>> {match (self.origin.try_cast(), self.size.try_cast()) {(Some(origin), Some(size)) => Some(Rect::new(origin, size)),_ => None,}}// Convenience functions for common casts/// Cast into an `f32` rectangle.#[inline]pub fn to_f32(&self) -> Rect<f32, U> {self.cast()}/// Cast into an `f64` rectangle.#[inline]pub fn to_f64(&self) -> Rect<f64, U> {self.cast()}/// Cast into an `usize` rectangle, truncating decimals if any.////// When casting from floating point rectangles, it is worth considering whether/// to `round()`, `round_in()` or `round_out()` before the cast in order to/// obtain the desired conversion behavior.#[inline]pub fn to_usize(&self) -> Rect<usize, U> {self.cast()}/// Cast into an `u32` rectangle, truncating decimals if any.////// When casting from floating point rectangles, it is worth considering whether/// to `round()`, `round_in()` or `round_out()` before the cast in order to/// obtain the desired conversion behavior.#[inline]pub fn to_u32(&self) -> Rect<u32, U> {self.cast()}/// Cast into an `u64` rectangle, truncating decimals if any.////// When casting from floating point rectangles, it is worth considering whether/// to `round()`, `round_in()` or `round_out()` before the cast in order to/// obtain the desired conversion behavior.#[inline]pub fn to_u64(&self) -> Rect<u64, U> {self.cast()}/// Cast into an `i32` rectangle, truncating decimals if any.////// When casting from floating point rectangles, it is worth considering whether/// to `round()`, `round_in()` or `round_out()` before the cast in order to/// obtain the desired conversion behavior.#[inline]pub fn to_i32(&self) -> Rect<i32, U> {self.cast()}/// Cast into an `i64` rectangle, truncating decimals if any.////// When casting from floating point rectangles, it is worth considering whether/// to `round()`, `round_in()` or `round_out()` before the cast in order to/// obtain the desired conversion behavior.#[inline]pub fn to_i64(&self) -> Rect<i64, U> {self.cast()}
}impl<T: Float, U> Rect<T, U> {/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.origin.is_finite() && self.size.is_finite()}
}impl<T: Floor + Ceil + Round + Add<T, Output = T> + Sub<T, Output = T>, U> Rect<T, U> {/// Return a rectangle with edges rounded to integer coordinates, such that/// the returned rectangle has the same set of pixel centers as the original/// one./// Edges at offset 0.5 round up./// Suitable for most places where integral device coordinates/// are needed, but note that any translation should be applied first to/// avoid pixel rounding errors./// Note that this is *not* rounding to nearest integer if the values are negative./// They are always rounding as floor(n + 0.5).////// # Usage notes/// Note, that when using with floating-point `T` types that method can significantly/// lose precision for large values, so if you need to call this method very often it/// is better to use [`Box2D`].#[must_use]pub fn round(&self) -> Self {self.to_box2d().round().to_rect()}/// Return a rectangle with edges rounded to integer coordinates, such that/// the original rectangle contains the resulting rectangle.////// # Usage notes/// Note, that when using with floating-point `T` types that method can significantly/// lose precision for large values, so if you need to call this method very often it/// is better to use [`Box2D`].#[must_use]pub fn round_in(&self) -> Self {self.to_box2d().round_in().to_rect()}/// Return a rectangle with edges rounded to integer coordinates, such that/// the original rectangle is contained in the resulting rectangle.////// # Usage notes/// Note, that when using with floating-point `T` types that method can significantly/// lose precision for large values, so if you need to call this method very often it/// is better to use [`Box2D`].#[must_use]pub fn round_out(&self) -> Self {self.to_box2d().round_out().to_rect()}
}impl<T, U> From<Size2D<T, U>> for Rect<T, U>
whereT: Zero,
{fn from(size: Size2D<T, U>) -> Self {Self::from_size(size)}
}/// Shorthand for `Rect::new(Point2D::new(x, y), Size2D::new(w, h))`.
pub const fn rect<T, U>(x: T, y: T, w: T, h: T) -> Rect<T, U> {Rect::new(Point2D::new(x, y), Size2D::new(w, h))
}#[cfg(test)]
mod tests {use crate::default::{Point2D, Rect, Size2D};use crate::side_offsets::SideOffsets2D;use crate::{point2, rect, size2, vec2};#[test]fn test_translate() {let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));let pp = p.translate(vec2(10, 15));assert!(pp.size.width == 50);assert!(pp.size.height == 40);assert!(pp.origin.x == 10);assert!(pp.origin.y == 15);let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));let rr = r.translate(vec2(0, -10));assert!(rr.size.width == 50);assert!(rr.size.height == 40);assert!(rr.origin.x == -10);assert!(rr.origin.y == -15);}#[test]fn test_union() {let p = Rect::new(Point2D::new(0, 0), Size2D::new(50, 40));let q = Rect::new(Point2D::new(20, 20), Size2D::new(5, 5));let r = Rect::new(Point2D::new(-15, -30), Size2D::new(200, 15));let s = Rect::new(Point2D::new(20, -15), Size2D::new(250, 200));let pq = p.union(&q);assert!(pq.origin == Point2D::new(0, 0));assert!(pq.size == Size2D::new(50, 40));let pr = p.union(&r);assert!(pr.origin == Point2D::new(-15, -30));assert!(pr.size == Size2D::new(200, 70));let ps = p.union(&s);assert!(ps.origin == Point2D::new(0, -15));assert!(ps.size == Size2D::new(270, 200));}#[test]fn test_intersection() {let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));let q = Rect::new(Point2D::new(5, 15), Size2D::new(10, 10));let r = Rect::new(Point2D::new(-5, -5), Size2D::new(8, 8));let pq = p.intersection(&q);assert!(pq.is_some());let pq = pq.unwrap();assert!(pq.origin == Point2D::new(5, 15));assert!(pq.size == Size2D::new(5, 5));let pr = p.intersection(&r);assert!(pr.is_some());let pr = pr.unwrap();assert!(pr.origin == Point2D::new(0, 0));assert!(pr.size == Size2D::new(3, 3));let qr = q.intersection(&r);assert!(qr.is_none());}#[test]fn test_intersection_overflow() {// test some scenarios where the intersection can overflow but// the min_x() and max_x() don't. Gecko currently fails these caseslet p = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(0, 0));let q = Rect::new(Point2D::new(2136893440, 2136893440),Size2D::new(279552, 279552),);let r = Rect::new(Point2D::new(-2147483648, -2147483648), Size2D::new(1, 1));assert!(p.is_empty());let pq = p.intersection(&q);assert!(pq.is_none());let qr = q.intersection(&r);assert!(qr.is_none());}#[test]fn test_contains() {let r = Rect::new(Point2D::new(-20, 15), Size2D::new(100, 200));assert!(r.contains(Point2D::new(0, 50)));assert!(r.contains(Point2D::new(-10, 200)));// The `contains` method is inclusive of the top/left edges, but not the// bottom/right edges.assert!(r.contains(Point2D::new(-20, 15)));assert!(!r.contains(Point2D::new(80, 15)));assert!(!r.contains(Point2D::new(80, 215)));assert!(!r.contains(Point2D::new(-20, 215)));// Points beyond the top-left corner.assert!(!r.contains(Point2D::new(-25, 15)));assert!(!r.contains(Point2D::new(-15, 10)));// Points beyond the top-right corner.assert!(!r.contains(Point2D::new(85, 20)));assert!(!r.contains(Point2D::new(75, 10)));// Points beyond the bottom-right corner.assert!(!r.contains(Point2D::new(85, 210)));assert!(!r.contains(Point2D::new(75, 220)));// Points beyond the bottom-left corner.assert!(!r.contains(Point2D::new(-25, 210)));assert!(!r.contains(Point2D::new(-15, 220)));let r = Rect::new(Point2D::new(-20.0, 15.0), Size2D::new(100.0, 200.0));assert!(r.contains_rect(&r));assert!(!r.contains_rect(&r.translate(vec2(0.1, 0.0))));assert!(!r.contains_rect(&r.translate(vec2(-0.1, 0.0))));assert!(!r.contains_rect(&r.translate(vec2(0.0, 0.1))));assert!(!r.contains_rect(&r.translate(vec2(0.0, -0.1))));// Empty rectangles are always considered as contained in other rectangles,// even if their origin is not.let p = Point2D::new(1.0, 1.0);assert!(!r.contains(p));assert!(r.contains_rect(&Rect::new(p, Size2D::zero())));}#[test]fn test_scale() {let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));let pp = p.scale(10, 15);assert!(pp.size.width == 500);assert!(pp.size.height == 600);assert!(pp.origin.x == 0);assert!(pp.origin.y == 0);let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));let rr = r.scale(1, 20);assert!(rr.size.width == 50);assert!(rr.size.height == 800);assert!(rr.origin.x == -10);assert!(rr.origin.y == -100);}#[test]fn test_inflate() {let p = Rect::new(Point2D::new(0, 0), Size2D::new(10, 10));let pp = p.inflate(10, 20);assert!(pp.size.width == 30);assert!(pp.size.height == 50);assert!(pp.origin.x == -10);assert!(pp.origin.y == -20);let r = Rect::new(Point2D::new(0, 0), Size2D::new(10, 20));let rr = r.inflate(-2, -5);assert!(rr.size.width == 6);assert!(rr.size.height == 10);assert!(rr.origin.x == 2);assert!(rr.origin.y == 5);}#[test]fn test_inner_outer_rect() {let inner_rect = Rect::new(point2(20, 40), size2(80, 100));let offsets = SideOffsets2D::new(20, 10, 10, 10);let outer_rect = inner_rect.outer_rect(offsets);assert_eq!(outer_rect.origin.x, 10);assert_eq!(outer_rect.origin.y, 20);assert_eq!(outer_rect.size.width, 100);assert_eq!(outer_rect.size.height, 130);assert_eq!(outer_rect.inner_rect(offsets), inner_rect);}#[test]fn test_min_max_x_y() {let p = Rect::new(Point2D::new(0u32, 0u32), Size2D::new(50u32, 40u32));assert!(p.max_y() == 40);assert!(p.min_y() == 0);assert!(p.max_x() == 50);assert!(p.min_x() == 0);let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));assert!(r.max_y() == 35);assert!(r.min_y() == -5);assert!(r.max_x() == 40);assert!(r.min_x() == -10);}#[test]fn test_width_height() {let r = Rect::new(Point2D::new(-10, -5), Size2D::new(50, 40));assert!(r.width() == 50);assert!(r.height() == 40);}#[test]fn test_is_empty() {assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 0u32)).is_empty());assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(10u32, 0u32)).is_empty());assert!(Rect::new(Point2D::new(0u32, 0u32), Size2D::new(0u32, 10u32)).is_empty());assert!(!Rect::new(Point2D::new(0u32, 0u32), Size2D::new(1u32, 1u32)).is_empty());assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 0u32)).is_empty());assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(10u32, 0u32)).is_empty());assert!(Rect::new(Point2D::new(10u32, 10u32), Size2D::new(0u32, 10u32)).is_empty());assert!(!Rect::new(Point2D::new(10u32, 10u32), Size2D::new(1u32, 1u32)).is_empty());}#[test]fn test_round() {let mut x = -2.0;let mut y = -2.0;let mut w = -2.0;let mut h = -2.0;while x < 2.0 {while y < 2.0 {while w < 2.0 {while h < 2.0 {let rect = Rect::new(Point2D::new(x, y), Size2D::new(w, h));assert!(rect.contains_rect(&rect.round_in()));assert!(rect.round_in().inflate(1.0, 1.0).contains_rect(&rect));assert!(rect.round_out().contains_rect(&rect));assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round_out()));assert!(rect.inflate(1.0, 1.0).contains_rect(&rect.round()));assert!(rect.round().inflate(1.0, 1.0).contains_rect(&rect));h += 0.1;}w += 0.1;}y += 0.1;}x += 0.1;}}#[test]fn test_center() {let r: Rect<i32> = rect(-2, 5, 4, 10);assert_eq!(r.center(), point2(0, 10));let r: Rect<f32> = rect(1.0, 2.0, 3.0, 4.0);assert_eq!(r.center(), point2(2.5, 4.0));}#[test]fn test_nan() {let r1: Rect<f32> = rect(-2.0, 5.0, 4.0, std::f32::NAN);let r2: Rect<f32> = rect(std::f32::NAN, -1.0, 3.0, 10.0);assert_eq!(r1.intersection(&r2), None);}
}

http://www.ppmy.cn/devtools/155754.html

相关文章

TypeScript语言的语法糖

TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言&#xff0c;它在JavaScript的基础上添加了一些强类型的特性&#xff0c;使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中&#xff0c;不仅包含了静态类型、接口、枚举等强大的特性&…

计算机毕业设计Python动漫推荐系统 漫画推荐系统 动漫视频推荐系统 机器学习 bilibili动漫爬虫 数据可视化 数据分析 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

vim的多文件操作

[rootxxx ~]# vim aa.txt bb.txt cc.txt #多文件操作 next #下一个文件 prev #上一个文件 first #第一个文件 last #最后一个文件 快捷键: ctrlshift^ #当前和上个之间切换 说明&#xff1a;快捷键ctrlshift^&#xff0c…

书生大模型实战营7

文章目录 L1——基础岛提示词工程实践什么是Prompt(提示词)什么是提示工程提示设计框架CRISPECO-STAR LangGPT结构化提示词LangGPT结构编写技巧构建全局思维链保持上下文语义一致性有机结合其他 Prompt 技巧 常用的提示词模块 浦语提示词工程实践(LangGPT版)自动化生成LangGPT提…

计算机网络网络层进阶:NAT、ARP 与 IP 系列技术全析!!!

一、网络地址转换NAT 私有IP 地址(内网IP)&#xff1a; 10.0.0.0~10.255.255.255 172.16.0.0~172.31.255.255 192.168.0.0~192.168.255.255 只允许分配给局域网内部的节点,不允许分配给互联网上的节点每个局域网内部都可以自行分配这些私有 IP 地址私有 IP 地址是可复用的&…

oracle: 多表查询之联合查询[交集intersect, 并集union,差集minus]

把多个查询结果上下合并, 即, 通过操作符将多个 SELECT 语句的结果集合并为一个结果集。虽然联合查询通常用于从多个表中检索数据&#xff0c;但它也可以用于从同一个表中检索不同的数据集。 联合查询: 交集,并集,差集 默认的排序规则通常是基于查询结果集中的列的自然顺序。…

Games202Lecture 6 Real-time Environment Mapping

RTRT RTRT&#xff08;real time ray tracing): path tracingdenoising PRT PRT (Precomputed radiance transfer):离线预计算&#xff0c;运行时快速内积。 预计算&#xff08;Offline Precomputation&#xff09;&#xff1a; 传输函数&#xff08;Transfer Function&…

129.求根节点到叶节点数字之和(遍历思想)

Problem: 129.求根节点到叶节点数字之和 文章目录 题目描述思路复杂度Code 题目描述 思路 遍历思想(利用二叉树的先序遍历) 直接利用二叉树的先序遍历&#xff0c;将遍历过程中的节点值先利用字符串拼接起来遇到根节点时再转为数字并累加起来&#xff0c;在归的过程中&#xf…