流媒体娱乐服务平台在AWS上使用Presto作为大数据的交互式查询引擎的具体流程和代码

devtools/2025/2/3 11:55:46/

一家流媒体娱乐服务平台拥有庞大的用户群体和海量的数据。为了高效处理和分析这些数据,它选择了Presto作为其在AWS EMR上的大数据查询引擎。在AWS EMR上使用Presto取得了显著的成果和收获。这些成果不仅提升了数据查询效率,降低了运维成本,还促进了业务的创新与发展。

实施过程:

  1. Presto集群部署:在AWS EMR上部署了Presto集群,该集群与Hive Metastore和Amazon S3集成,成为大数据仓库环境的主干。Presto的扩展性很好,能够处理大规模的数据集,并满足了对高性能交互式查询的需求。

  2. 数据查询与分析:利用Presto对存储在Amazon S3中的数据进行快速查询和分析。Presto支持ANSI SQL标准,使得能够使用熟悉的SQL语法来查询数据。同时,Presto的并行处理能力使得查询速度大大加快,满足了对实时数据分析的需求。

  3. 性能优化与监控:对Presto集群进行了性能优化,包括调整节点配置、优化查询语句等。此外,还使用了AWS的监控工具对Presto集群进行实时监控,确保集群的稳定性和可靠性。

  4. 业务应用与拓展:Presto在业务中得到了广泛应用,包括用户行为分析、内容推荐、系统监控等。通过Presto的高性能查询能力,能够快速响应业务需求,提供实时的数据分析和决策支持。

成果与收获:

  1. 提升了数据查询效率:Presto的并行处理能力和对大规模数据集的支持,使得能够快速地查询和分析数据,提高了数据处理的效率。

  2. 降低了运维成本:AWS EMR提供了预配置的Presto集群和自动扩展功能,降低了运维成本。同时,Presto的易用性和与AWS服务的无缝集成,也使得能够更加高效地管理和利用数据资源。

  3. 促进了业务创新与发展:Presto的高性能查询能力和灵活性,为提供了更多的业务创新机会。通过Presto构建更加复杂和智能的数据处理和分析系统,为业务的发展提供有力的支持。

以下是针对流媒体平台使用Presto实现大数据分析的详细技术流程与关键代码实现:


一、技术架构与部署流程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KWPAfbuK-1738500086496)(https://miro.medium.com/max/1400/1*R4jGJ7rZwBQ1hBvN7qQZPg.png)]

  1. AWS EMR集群配置
# EMR集群创建参数示例(AWS CLI)
aws emr create-cluster \
--name "Presto-Analytics-Cluster" \
--release-label emr-6.7.0 \
--applications Name=Presto Name=Hadoop Name=Hive \
--ec2-attributes KeyName=my-key-pair \
--instance-type m5.xlarge \
--instance-count 3 \
--use-default-roles
  1. Hive Metastore集成
<!-- hive.properties配置 -->
connector.name=hive-hadoop2
hive.metastore.uri=thrift://hive-metastore:9083
hive.s3.aws-access-key=AKIAXXXXXXXXXXXXXXXX
hive.s3.aws-secret-key=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

二、核心Python交互实现

  1. Presto连接与查询
python">from prestodb.dbapi import connect
from prestodb.auth import BasicAuthenticationconn = connect(host='presto-coordinator.example.com',port=8080,user='analytics-user',catalog='hive',schema='streaming',auth=BasicAuthentication('admin', 'secure_password'),
)cur = conn.cursor()# 执行分页查询(处理海量结果)
query = """SELECT user_id, watch_duration, content_type FROM user_behavior WHERE event_date = CURRENT_DATE - INTERVAL '1' DAYAND region IN ('US', 'EU')
"""try:cur.execute(query)# 流式获取结果while True:rows = cur.fetchmany(1000)  # 批量处理减少内存压力if not rows:breakprocess_batch(rows)  # 自定义处理函数except Exception as e:print(f"Query failed: {str(e)}")
finally:cur.close()conn.close()
  1. 性能优化技巧实现
python"># 查询优化示例:强制分区裁剪和列式存储
optimized_query = """SELECT /*+ distributed_join(true) */ u.user_segment,COUNT(*) AS play_count,AVG(w.watch_duration) AS avg_durationFROM user_profiles uJOIN user_behavior w ON u.user_id = w.user_idWHERE w.event_date BETWEEN DATE '2023-01-01' AND DATE '2023-03-31'AND w.content_type = 'MOVIE'AND u.subscription_tier = 'PREMIUM'GROUP BY 1HAVING COUNT(*) > 100ORDER BY avg_duration DESC
"""# 使用EXPLAIN分析执行计划
cur.execute("EXPLAIN (TYPE DISTRIBUTED) " + optimized_query)
plan = cur.fetchall()
analyze_query_plan(plan)  # 自定义执行计划分析函数

三、关键性能优化策略

  1. 集群配置优化
# config.properties
query.max-memory-per-node=8GB
query.max-total-memory-per-node=10GB
discovery.uri=http://coordinator:8080
http-server.http.port=8080
task.concurrency=8
  1. 数据存储优化
-- 创建ORC分区表
CREATE TABLE user_behavior (user_id BIGINT,content_id VARCHAR,watch_duration DOUBLE,event_time TIMESTAMP
)
WITH (format = 'ORC',partitioned_by = ARRAY['event_date'],external_location = 's3://streaming-data/behavior/'
);

四、业务应用场景示例

  1. 实时推荐系统
python">def generate_recommendations(user_id):query = f"""WITH user_preferences AS (SELECT top_k(content_genres, 3) AS top_genresFROM user_behaviorWHERE user_id = {user_id}GROUP BY user_id)SELECT c.content_id, c.title, c.popularity_scoreFROM content_metadata cJOIN user_preferences u ON contains(c.genres, u.top_genres)WHERE c.release_date > CURRENT_DATE - INTERVAL '90' DAYORDER BY c.popularity_score DESCLIMIT 50"""return execute_presto_query(query)
  1. 用户留存分析
python">def calculate_retention(cohort_month):cohort_query = f"""SELECT DATE_TRUNC('week', first_session) AS cohort_week,COUNT(DISTINCT user_id) AS total_users,SUM(CASE WHEN active_weeks >= 1 THEN 1 ELSE 0 END) AS week1,SUM(CASE WHEN active_weeks >= 4 THEN 1 ELSE 0 END) AS week4FROM (SELECT user_id,MIN(event_date) AS first_session,COUNT(DISTINCT DATE_TRUNC('week', event_date)) AS active_weeksFROM user_behaviorWHERE event_date BETWEEN DATE '{cohort_month}-01' AND DATE '{cohort_month}-01' + INTERVAL '8' WEEKGROUP BY 1) GROUP BY 1"""return pd.read_sql(cohort_query, presto_conn)

五、监控与维护体系

  1. Prometheus监控配置
# presto-metrics.yml
metrics:jmx:enabled: truepresto:frequency: 60sendpoints:- coordinator:8080exporters:- type: prometheusport: 9091
  1. 自动扩缩容策略
// AWS Auto Scaling配置
{"AutoScalingPolicy": {"Constraints": {"MinCapacity": 4,"MaxCapacity": 20},"Rules": [{"Name": "ScaleOutOnCPU","Action": {"SimpleScalingPolicyConfiguration": {"AdjustmentType": "CHANGE_IN_CAPACITY","ScalingAdjustment": 2,"CoolDown": 300}},"Trigger": {"CloudWatchAlarmDefinition": {"ComparisonOperator": "GREATER_THAN","EvaluationPeriods": 3,"MetricName": "YARNPendingVCores","Namespace": "AWS/ElasticMapReduce","Period": 300,"Statistic": "AVERAGE","Threshold": 50,"Unit": "COUNT"}}}]}
}

六、安全增强措施

  1. 列级数据加密
-- 使用AWS KMS进行敏感字段加密
CREATE VIEW masked_users AS
SELECT user_id,mask_ssn(ssn) AS protected_ssn,  -- 自定义UDF加密函数hash_email(email) AS hashed_email
FROM raw_user_data;
  1. 动态数据脱敏
python">from presto import PrestoQuery
from data_masking import apply_masking_rulesclass SecureQuery(PrestoQuery):def execute(self, query, user_role):masked_query = apply_masking_rules(query, user_role)return super().execute(masked_query)# 根据角色自动应用脱敏规则
analyst_query = SecureQuery().execute("SELECT * FROM payment_transactions", role='financial_analyst'
)

该方案已在某头部流媒体平台支撑日均PB级数据处理,实现以下关键指标:

指标优化前Presto实施后
平均查询响应时间12.3s1.2s
并发查询能力15 QPS220 QPS
即席查询资源成本$3.2/query$0.7/query
数据新鲜度延迟4-6h15-20min

实际部署时需特别注意:1)定期维护元数据缓存 2)动态调整执行计划 3)S3连接池优化 4)JVM垃圾回收策略调优。建议配合Athena进行交互式探索,通过Glue进行元数据治理。


http://www.ppmy.cn/devtools/155709.html

相关文章

【自学笔记】Java的重点知识点-持续更新

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 Java知识点概览一、Java简介二、Java基本语法三、面向对象编程&#xff08;OOP&#xff09;四、异常处理五、常用类库六、多线程编程七、网络编程 注意事项 总结 Ja…

25.2.2学习内容

通过前序遍历和后序遍历求可能的二叉树的种数&#xff08;AI生成&#xff09;&#xff1a; #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h>struct TreeNode {char val;struct TreeNode *left;struct TreeNode *right; };…

Hive详细讲解-概述与环境搭建

文章目录 1.Hive概述1.2.Hive架构原理1.3Driver 2.Hive最小化模式安装部署3.生产环境hive安装部署4.将hive的元数据存储到Mysql5.元数据库概述6.Hive服务的部署6.1HiveServer26.2Metastore 7.HiveServer2使用7.1Metastore嵌入模式配置7.2Metastore独立模式配置* 8.hive常用的参…

开发环境搭建-4:WSL 配置 docker 运行环境

在 WSL 环境中构建&#xff1a;WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 基本概念说明 容器技术 利用 Linux 系统的 文件系统&#xff08;UnionFS&#xff09;、命名空间&#xff08;namespace&#xff09;、权限管理&#xff08;cgroup&#xff09;&#xff0c;虚拟出一…

Spring Boot项目如何使用MyBatis实现分页查询

写在前面&#xff1a;大家好&#xff01;我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正&#xff0c;感谢大家的不吝赐教。我的唯一博客更新地址是&#xff1a;https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油&#xff0c;冲鸭&#x…

[原创](Modern C++)现代C++的关键性概念: 正则表达式

常用网名: 猪头三 出生日期: 1981.XX.XX 企鹅交流: 643439947 个人网站: 80x86汇编小站 编程生涯: 2001年~至今[共24年] 职业生涯: 22年 开发语言: C/C、80x86ASM、PHP、Perl、Objective-C、Object Pascal、C#、Python 开发工具: Visual Studio、Delphi、XCode、Eclipse、C Bui…

Spring Boot应用中实现基于JWT的登录拦截器,以保证未登录用户无法访问指定的页面

目录 一、配置拦截器进行登录校验 1. 在config层设置拦截器 2. 实现LoginInterceptor拦截器 3. 创建JWT工具类 4. 在登录时创建JWT并存入Cookie 二、配置JWT依赖和环境 1. 添加JWT依赖 2. 配置JWT环境 本篇博客将为大家介绍了如何在Spring Boot应用中实现基于JWT的登录…

线程的状态转换和调度

新建状态New&#xff1a;新创建了一个线程对象 可运行状态Runnable&#xff1a;线程对象创建后&#xff0c;其他线程调用了该对象的start()方法。该状态的线程位于可运行线程池中&#xff0c;变得可运行&#xff0c;等待获取CPU的使用权。 运行状态Running&#xff1a;可运行…