OpenCV:特征检测总结

devtools/2025/2/2 13:26:40/

目录

一、什么是特征检测?

二、OpenCV 中的常见特征检测方法

1. Harris 角点检测

2. Shi-Tomasi 角点检测

3. Canny 边缘检测

4. SIFT(尺度不变特征变换)

5. ORB

三、特征检测的应用场景

1. 图像匹配

2. 运动检测

3. 自动驾驶

4. 生物特征识别

四、总结


一、什么是特征检测?

特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。

特征检测的基本类型:

  1. 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
  2. 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
  3. 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。

二、OpenCV 中的常见特征检测方法

OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。

1. Harris 角点检测

Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。

核心思想:

  • 计算图像窗口在不同方向上的灰度变化。
  • 若在所有方向上灰度变化较大,则认为该点是角点。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

 

应用场景:

  • 目标跟踪
  • 运动检测
  • 物体识别

2. Shi-Tomasi 角点检测

Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):x, y = corner.ravel()cv2.circle(image, (x, y), 5, (0, 255, 0), -1)# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

应用场景:

  • 运动跟踪(如光流跟踪)
  • 结构分析

3. Canny 边缘检测

Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。

核心步骤:

  1. 高斯模糊去噪。
  2. 计算梯度,检测边缘。
  3. 通过非极大值抑制减少边缘宽度。
  4. 通过双阈值去除弱边缘。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 车道检测
  • 物体轮廓提取
  • OCR(光学字符识别)

4. SIFT(尺度不变特征变换)

SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:  

 

应用场景:

  • 图像匹配(如拼接全景图)
  • 物体识别
  • 机器人导航

5. ORB

ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 低计算资源环境(如嵌入式设备)
  • 物体跟踪
  • 视觉 SLAM(同时定位与地图构建)

三、特征检测的应用场景

1. 图像匹配

  • 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。

2. 运动检测

  • 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。

3. 自动驾驶

  • Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。

4. 生物特征识别

  • SIFT、ORB 可用于 指纹识别、人脸识别。

四、总结

方法主要用途特点
Harris 角点角点检测计算简单,适用于运动检测
Shi-Tomasi 角点改进的角点检测适用于光流跟踪等任务
Canny 边缘边缘检测精确提取物体轮廓
SIFT关键点检测、图像匹配尺度、旋转不变,精度高
ORB关键点检测、实时匹配适合移动端,速度快

如何选择特征检测方法?

  • 如果需要快速检测角点:Shi-Tomasi、Harris。
  • 如果需要检测物体轮廓:Canny。
  • 如果需要进行图像匹配:SIFT、ORB。
  • 如果需要在低计算资源环境下运行:ORB 是更好的选择。

😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!


http://www.ppmy.cn/devtools/155451.html

相关文章

人工智能入门课【手写自注意力机制】

原理 自注意力(Self-Attention)是一种强大的机制,广泛应用于自然语言处理、计算机视觉等领域,尤其是在Transformer架构中发挥了关键作用。它的核心思想是让模型能够动态地关注输入序列中不同位置之间的关系,从而更好地…

AI大模型开发原理篇-4:神经概率语言模型NPLM

神经概率语言模型(NPLM)概述 神经概率语言模型(Neural Probabilistic Language Model, NPLM) 是一种基于神经网络的语言建模方法,它将传统的语言模型和神经网络结合在一起,能够更好地捕捉语言中的复杂规律…

【Go语言圣经】第五节:函数

第五章:函数 5.1 函数声明 和其它语言类似,Golang 的函数声明包括函数名、形参列表、返回值列表(可省略)以及函数体: func name(parameter-list) (result-list) {/* ... Body ... */ }需要注意的是,函数…

RK3568 wifi使用(使用Linux指令操作)

文章目录 一、wifi扫描指令1. iwlist wlan0 scan2. iw dev wlan0 scan总结 二、连接wifi指令1. 使用 nmcli(NetworkManager CLI)连接 Wi-Fi 网络的步骤:备注: 2. 使用 iwconfig连接 Wi-Fi 网络的步骤:备注:…

力扣面试150 快乐数 循环链表找环 链表抽象 哈希

Problem: 202. 快乐数 👩‍🏫 参考题解 Code public class Solution {public int squareSum(int n) {int sum 0;while(n > 0){int digit n % 10;sum digit * digit;n / 10;}return sum;}public boolean isHappy(int n) {int slow n, fast squa…

vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列

最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…

OpenAI推出o3-mini推理模型,首次免费开放,性能超越o1,AIME测试准确率高达87.3%

OpenAI在2025年初推出了一款新的推理模型o3-mini,这款模型标志着公司在提升性能的同时也降低了成本,并且首次向免费用户提供访问权限。o3-mini是OpenAI推理系列中最新、最具成本效益的模型,在科学、数学、编程等领域的性能显著超越了之前的o1…

LeetCode:322.零钱兑换

跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:322.零钱兑换 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount …