【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)

devtools/2025/2/2 12:17:09/

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨
✨ 个人主页:余辉zmh–CSDN博客
✨ 文章所属专栏:贪心算法篇–CSDN博客

在这里插入图片描述

文章目录

  • 一.贪心算法
  • 二.例题
    • 1.柠檬水找零
    • 2.将数组和减半的最小操作次数
    • 3.最大数
    • 4.摆动序列

一.贪心算法

1.什么是贪心算法

贪心算法Greedy Algorithm)是一种在每一步选择中都采取在当前状态下的最优决策的算法策略。他并不从整体最优上加以考虑,而是做出在当前看来是最好的选择。

1.把解决问题的过程分为若干步骤。

2.解决每一步时都选取当前看起来最优的选择。

3.“希望”得到全局最优解。(注意是“希望”,可不一定就是最优解)

简单形容就是贪婪+鼠目寸光,因此叫做贪心算法

下面介绍几个典型的示例:

在这里插入图片描述

2.贪心算法的特点

  • 贪心策略的提出
    • 贪心策略的提出是没有标准和模板的,可能每一道题的贪心策略都是不同的,因此在学习贪心算法的时候重点要掌握每一道题的策略,把这道题的策略当成经验。
  • 贪心策略的正确性
    • 前面提到一个词“希望”得到最优解,因为有可能“贪心策略是一个错误的方法,正确的贪心策略,是需要严格的数学证明。

二.例题

1.柠檬水找零

题目

在这里插入图片描述

在这里插入图片描述

算法原理

根据题意可以明白,顾客付钱有三种情况,如果是5美元,那就直接收下;如果是10美元,并且当前手里5美元的数量大于等于1,收下然后找零5美元,如果没有5美元,则返回false;如果是20美元,有两种找零方式,第一种:10+5;第二种:5+5+5;这里就用到了贪心的思想,优先使用第一种方式找零。如果第一次20美元使用第二种找零方式,恰好手里有三张5美元,一张10美元,如果第一次就使用三张5美元,等之后再次遇到10美元,就只剩一张10美元,不能找零。

这里用到的是交换论证法:如果20美元使用第二种找零方式,手里的10美元一直到最后也没有使用,因此10美元可以替换20美元找零时的两张5美元;如果第一次20美元使用第二种找零方式5+5+5,第二次使用第一种方式找零10+5,第二次的10可以和第一次的两张5交换,交换后无影响。

代码实现

bool lemonadeChange(vector<int>& bills){//设置两个变量一个用来表示5元的个数,一用来表示10元的个数int five = 0, ten = 0;for(auto x : bills){//如果给的是5元,直接收下if(x==5){five++;}//如果给的是10元,先判度是否有5元找零,有就找零收下,没有就返回if(x==10){if(five==0){return false;}else{five--;ten++;}}//如果给的是20元,有三种情况if(x==20){//贪心思想,优先考虑10+5找零if(ten&&five){five--;ten--;}//第一种不能找零,再考虑第二种找零方式5+5+5else if(five>=3){five -= 3;}//如果两种情况都不能找零,返回else{return false;}}}return true;
}

2.将数组和减半的最小操作次数

题目

在这里插入图片描述

在这里插入图片描述

算法原理

因此本道题的贪心策略:使用最少的操作次数完成数组和的减半,因此每次选择一个数减半时,都选择最大的那个数减半,这里就是贪心的思想,每次都选择最大的数减半。既然要快速获取数组中的最大数,就可以借助大根堆这个数据结构,每次都选择堆顶的元素减半,减半后从新放回堆中调整,然后循环进行,知道数组和减到一半,返回最小操作数。

代码实现

int halveArray(vector<int>& nums){//建立一个大根堆priority_queue<double> heap;//遍历数组求和并存放到堆中double sum = 0.0;for(int x : nums){heap.push(x);sum += x;}//先获取数组和的一半,每次减去堆顶元素的一半直到减为小于等于0sum /= 2.0;int count=0;while(sum>0){//获取堆顶元素的一半,并删去double t = heap.top() / 2.0;heap.pop();count++;sum -= t;heap.push(t);}return count;
}

3.最大数

题目

在这里插入图片描述

算法原理

根据题意要求,可以自定义排序规则,因为要返回的是组合后最大的数,所以按照自定义的排序规则从大到小的排序;比如现在有两个数,a和b,有两种组合方式ab和ba,如果组合后ab>ba,则a在前,b在后;如果ab=ba,则a=b;如果ab<ba,则b在前,a在后;比如示例一:a=10,b=2,组合后ab=102<ba=210,所以b(2)在前,a(10)在后,根据自定义排序规则将整个数组中的元素都排序后,然后从前往后组合就是要找的最大数。

这里有一个细节点,如何快速的将两个数组合比较?可以先将每一个数都转化成字符串的形式,组合时直接的将两个字符串相加拼接即可,这样就能快速的组合,最后排完序后,还可以直接从前往后将所有字符串拼接,就是要返回的结果。

至于为什么上面的这个自定义排序规则是正确的,可以看下面的证明过程:

在这里插入图片描述

代码实现

string largestNumber(vector<int>& nums){//先将每个数字转换成字符串,存放到字典数组中vector<string> dictionary;for(auto x : nums){dictionary.push_back(to_string(x));}//使用Lambda表达式自定义排序规则sort(dictionary.begin(), dictionary.end(), [&](const string& s1, const string& s2){return s1 + s2 > s2 + s1; });string ret;for(auto s : dictionary){ret += s;}if(ret[0]=='0'){return "0";}return ret;
}

4.摆动序列

题目

在这里插入图片描述

在这里插入图片描述

算法原理

在这里插入图片描述

代码实现

//全局变量表示左侧的峰值
int left = 0;
int wiggleMaxLength(vector<int>& nums){//寻找波峰和波谷int ret = 0;for (int i = 0; i < nums.size(); i++){//如果是最后一个位置,直接+1if(i==nums.size()-1){ret++;break;}//先计算当前位置右侧的峰值int right = nums[i + 1] - nums[i];//如果右侧峰值等于0,跳过if(right==0){continue;}//如果左右两侧峰值相乘小于0,表示当前位置是波峰或者波谷if(left*right<=0){ret++;}//将当前位置的右侧峰值赋值给左侧,表示下一个位置的左侧峰值left = right;}return ret;
}

以上就是关于贪心算法以及一些练习题的讲解,如果哪里有错的话,可以在评论区指正,也欢迎大家一起讨论学习,如果对你的学习有帮助的话,点点赞关注支持一下吧!!!
在这里插入图片描述


http://www.ppmy.cn/devtools/155433.html

相关文章

C 语言雏启:擘画代码乾坤,谛观编程奥宇之初瞰

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。* 这一课主要是让大家初步了解C语言&#xff0c;了解我们的开发环境&#xff0c;main函数&#xff0c;库…

pytorch线性回归模型预测房价例子

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 import torch import torch.nn as nn import torch.optim as optim import numpy as np# 1. 创建线性回归模型类 class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).…

Java动态代理:原理与实现

在Java编程中&#xff0c;代理模式是一种常见的设计模式&#xff0c;它允许我们通过一个代理对象来控制对另一个对象的访问。代理模式的主要目的是在不改变原始类代码的情况下&#xff0c;增强或修改其行为。Java中的代理分为静态代理和动态代理两种。本文将重点介绍动态代理&a…

MySQL查询优化(三):深度解读 MySQL客户端和服务端协议

如果需要从 MySQL 服务端获得很高的性能&#xff0c;最佳的方式就是花时间研究 MySQL 优化和执行查询的机制。一旦理解了这些&#xff0c;大部分的查询优化是有据可循的&#xff0c;从而使得整个查询优化的过程更有逻辑性。下图展示了 MySQL 执行查询的过程&#xff1a; 客户端…

网络安全(黑客)——自学2025

&#x1f91f; 基于入门网络安全/黑客打造的&#xff1a;&#x1f449;黑客&网络安全入门&进阶学习资源包 前言 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“…

基于Django的Boss直聘IT岗位可视化分析系统的设计与实现

【Django】基于Django的Boss直聘IT岗位可视化分析系统的设计与实现&#xff08;完整系统源码开发笔记详细部署教程&#xff09;✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python作为主要开发语言&#xff0c;利用Django这一高效、安全的W…

Theorem

Theorem 打开题&#xff1a; from Crypto.Util.number import *from gmpy2 import *flag bxxxm bytes_to_long(flag) #flaglong_to_bytes(m)p getPrime(512) #随机生成一个512位的素数pq next_prime(p) #p之后的下一个…

玩转大语言模型——使用langchain和Ollama本地部署大语言模型

系列文章目录 玩转大语言模型——使用langchain和Ollama本地部署大语言模型 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 玩转大语言模型——使用GraphRAGOllama构建知识图谱 玩转大语言模型——完美解决Gra…