第38周:猫狗识别 (Tensorflow实战第八周)

devtools/2025/2/2 6:28:37/

目录

前言

一、前期工作

1.1 设置GPU

1.2 导入数据

输出

二、数据预处理

2.1 加载数据

2.2 再次检查数据

2.3 配置数据集

2.4 可视化数据

三、构建VGG-16网络

3.1 VGG-16网络介绍

3.2 搭建VGG-16模型

四、编译

五、训练模型

六、模型评估

七、预测

总结


前言

  • 🍨 本文为中的学习记录博客
  • 🍖 原作者:

说在前面

1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视化进度条;

2)运行环境:Python3.6、Pycharm2020、tensorflow2.4.0


一、前期工作

1.1 设置GPU

代码如下:

python">import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' # 忽略 Error
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
# 1.1 设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)

输出:[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

⚠️⚠️⚠️前期我没有使用GPU就采用的CPU训练速度很慢,虽然安装了tensorflow-gpu但还是用的CPU因为我的cudnn和cudatoolkit之前没配置成功,然后我补充安装。这里出线会打印很多关于gpu调用的日志信息,会很影响我们对训练过程和打印信息的关注度,这里我在import tensorflow之前先通过下面的设置来控制打印的内容

import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
os.environ["TF_CPP_MIN_LOG_LEVEL"]='3' 

TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息
TF_CPP_MIN_LOG_LEVEL 取值 1 : 屏蔽通知信息
TF_CPP_MIN_LOG_LEVEL 取值 2 : 屏蔽通知信息和警告信息
TF_CPP_MIN_LOG_LEVEL 取值 3 : 屏蔽通知信息、警告信息和报错信息                 
参考自:https://blog.csdn.net/xiaoqiaoliushuiCC/article/details/124435241

1.2 导入数据

代码如下:

python"># 1.2 导入数据
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
import os,PIL,pathlib
data_dir = "./data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

输出

图片总数为:  3400

二、数据预处理

2.1 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset,tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型

测试集与验证集的关系:

  • 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  • 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
  • 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

代码如下:

python"># 二、数据预处理
# 2.1 加载数据
batch_size = 8
img_height = 224
img_width = 224
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)
class_names = train_ds.class_names
print(class_names)

输出如下:

['cat', 'dog']

2.2 再次检查数据

代码如下:

python"># 2.2 再次检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break

输出:

(8, 224, 224, 3)
(8,)

2.3 配置数据集

代码如下:

python"># 2.3 配置数据集
AUTOTUNE = tf.data.AUTOTUNEdef preprocess_image(image,label):return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

2.4 可视化数据

代码如下:

python">plt.figure(figsize=(15, 10))  # 图形的宽为15高为10
for images, labels in train_ds.take(1):for i in range(8):ax = plt.subplot(5, 8, i + 1)plt.imshow(images[i])plt.title(class_names[labels[i]])plt.axis("off")

输出:

三、构建VGG-16网络

3.1 VGG-16网络介绍

结构说明:

  • 13个卷积层(Convolutional Layer),分别用blockX_convX表示
  • 3个全连接层(Fully connected Layer),分别用fcXpredictions表示
  • 5个池化层(Pool layer),分别用blockX_pool表示

网络结构图如下(包含了16个隐藏层--13个卷积层和3个全连接层,故称为VGG-16)

​​

3.2 搭建VGG-16模型

代码如下:

python"># 三、构建VGG-16网络
from tensorflow.keras import layers, models, Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropoutdef VGG16(nb_classes, input_shape):input_tensor = Input(shape=input_shape)# 1st blockx = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)# 2nd blockx = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)# 3rd blockx = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)# 4th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)# 5th blockx = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)# full connectionx = Flatten()(x)x = Dense(4096, activation='relu',  name='fc1')(x)x = Dense(4096, activation='relu', name='fc2')(x)output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)model = Model(input_tensor, output_tensor)return modelmodel=VGG16(1000, (img_width, img_height, 3))
model.summary()

模型结构打印如下:

​Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0

四、编译

代码如下:

python">model.compile(optimizer="adam",loss='sparse_categorical_crossentropy',metrics=['accuracy'])

五、训练模型

代码如下:

python"># 五、训练模型
from tqdm import tqdm
import tensorflow.keras.backend as Kepochs = 10
lr = 1e-4# 记录训练数据,方便后面的分析
history_train_loss = []
history_train_accuracy = []
history_val_loss = []
history_val_accuracy = []
for epoch in range(epochs):train_total = len(train_ds)val_total = len(val_ds)with tqdm(total=train_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=1, ncols=100) as pbar:lr = lr * 0.92K.set_value(model.optimizer.lr, lr)for image, label in train_ds:history = model.train_on_batch(image, label)train_loss = history[0]train_accuracy = history[1]pbar.set_postfix({"loss": "%.4f" % train_loss,"accuracy": "%.4f" % train_accuracy,"lr": K.get_value(model.optimizer.lr)})pbar.update(1)history_train_loss.append(train_loss)history_train_accuracy.append(train_accuracy)print('开始验证!')with tqdm(total=val_total, desc=f'Epoch {epoch + 1}/{epochs}', mininterval=0.3, ncols=100) as pbar:for image, label in val_ds:history = model.test_on_batch(image, label)val_loss = history[0]val_accuracy = history[1]pbar.set_postfix({"loss": "%.4f" % val_loss,"accuracy": "%.4f" % val_accuracy})pbar.update(1)history_val_loss.append(val_loss)history_val_accuracy.append(val_accuracy)print('结束验证!')print("验证loss为:%.4f" % val_loss)print("验证准确率为:%.4f" % val_accuracy)

打印训练过程:

六、模型评估

代码如下:

python">epochs_range = range(epochs)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

训练结果可视化如下:

​​

七、预测

代码如下:

python"># 七、预测
import numpy as np
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3))  # 图形的宽为18高为5
plt.suptitle("预测结果展示")
for images, labels in val_ds.take(1):for i in range(8):ax = plt.subplot(1, 8, i + 1)# 显示图片plt.imshow(images[i].numpy())# 需要给图片增加一个维度img_array = tf.expand_dims(images[i], 0)# 使用模型预测图片中的人物predictions = model.predict(img_array)plt.title(class_names[np.argmax(predictions)])plt.axis("off")

输出:

1/1 [==============================] - 0s 129ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 17ms/step


总结

  • Tensorflow训练过程中打印多余信息的处理,并且引入了进度条的显示方式,更加方便及时查看模型训练过程中的情况,可以及时打印各项指标
  • 修改了以往的model.fit()训练方法,改用model.train_on_batch方法。两种方法的比较:model.fit():用起来十分简单,对新手非常友好;model.train_on_batch():封装程度更低,可以玩更多花样
  • 完成了VGG-16基于Tensorflow下的搭建、训练等工作,对比分析了pytorch和tensorflow两个框架下实现同种任务的异同;
  • 完成VGG-16对猫狗图片的高精度识别

http://www.ppmy.cn/devtools/155361.html

相关文章

Python 类型注解

文章目录 Python 类型注解详解1. 引言2. Python 类型注解基础2.1 变量类型注解2.2 函数参数和返回值注解2.3 typing 模块的支持 3. 进阶:复杂数据类型3.1 可选类型(Optional)3.2 联合类型(Union)3.3 泛型(G…

基于Flask的旅游系统的设计与实现

【Flask】基于Flask的旅游系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python作为后端开发语言,结合前端Bootstrap框架,为用户提供了丰富…

【深度学习】softmax回归的从零开始实现

softmax回归的从零开始实现 (就像我们从零开始实现线性回归一样,)我们认为softmax回归也是重要的基础,因此(应该知道实现softmax回归的细节)。 本节我们将使用Fashion-MNIST数据集,并设置数据迭代器的批量大小为256。 import torch from IP…

家居EDI:Hom Furniture EDI需求分析

HOM Furniture 是一家成立于1977年的美国家具零售商,总部位于明尼苏达州。公司致力于提供高品质、时尚的家具和家居用品,满足各种家庭和办公需求。HOM Furniture 以广泛的产品线和优质的客户服务在市场上赢得了良好的口碑。公司经营的产品包括卧室、客厅…

2025_2_1 C语言中关于字符串

1.字符串 C语言中的字符串都是字符数组,以空字符 ‘\0’结尾。 创建一个字符数组必须以空字符结尾,不然会访问非法区域,直到找到\0为止 char c[] {a, b, c, \0};长度为n的字符串字面值,会存储在虚拟内存中的只读数据段中&#…

使用 Spring JDBC 进行数据库操作:深入解析 JdbcTemplate

目录 1. Spring JDBC 简介 2. JdbcTemplate 介绍 3. 创建数据库和表 4. 配置 Spring JDBC 5. 创建实体类 6. 使用 JdbcTemplate 实现增、删、改、查操作 7. Spring JDBC 优点 8. 小结 1. Spring JDBC 简介 Spring JDBC 是 Spring 框架中的一个模块,旨在简化…

ES2021+新特性、常用函数

一、ES2021新特性 ES2021 数字分隔符 let num 1234567 let num2 1_234_567 Promise.any 与 Promise.all 类似,Promise.any 也接受一个 Promise 的数组。当其中任何一个 Promise 完成(fullfill)时,就返回那个已经有完成值的 …

WPS怎么使用latex公式?

1、下载并安装mathtype https://blog.csdn.net/weixin_43135178/article/details/125143654?sharetypeblogdetail&sharerId125143654&sharereferPC&sharesourceweixin_43135178&spm1011.2480.3001.8118 2、将mathtype嵌入在WPS MathType面板嵌入器,免费工具…