Yolo11 + OCR 营业执照识别+信息抽取(预期后续改用其他ocr更简单,推理预计使用onnxruntim加速,分c++和python两种方式部署)

devtools/2025/1/30 22:49:53/

目录

一 数据集制作

1 labelimg的安装与使用

2 标注方式

3 数据集制作

二 模型训练 

三 使用Yolo11 + OCR 实现“营业执照”信息解析完整方案

1 cutLinesforcode.py

2 getBusinessLicenseContentPart.py

3 getPartWords.py

4 pdfTojpg.py

5 main.py


本项目可用于毕业设计参考实验营业执照分为横版竖版整体检测+识别效果如下所示:

说明:图片来源于网络,如有侵权,请联系作者删除。

系统:Ubuntu 20.04

需要的依赖:

  • pdf2image
pip install pdf2image -i https://pypi.tuna.tsinghua.edu.cn/simple
  • yolo11
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
  • pytesseract
pip install pytesseract -i https://pypi.tuna.tsinghua.edu.cn/simple

sudo apt updatesudo apt install tesseract-ocr# 在线安装中文字库sudo apt-get install tesseract-ocr-chi-sim

一 数据集制作


使用labelimg工具进行数据标注任务。


1 labelimg的安装与使用


安装方法: pip install labelimg
使用方法如下:
cd到labellmg所在路径

python labellmg.py


标注后生成的标记文件是xml文件。


2 标注方式


本项目的目标是解析出营业执照统一社会信用代码、名称、类型、法定代表人、经营范围、注册资本、成立日期、营业期限住所等信息
标注方式如下:

 

你可以根据自己的需求去对应进行数据集的制作,类比即可。


3 数据集制作


原始数据集格式如下图所示:

  • Annotations 里面存放标签xml文件
  • JPEGImage 里面存放原始图片
  • labels 里面存放的是标签txt文件。这个文件夹里的文件是通过脚本xmI_txt.py生成的。

xmI_txt.py代码如下

import xml.etree.ElementTree as ET
import os
import random# TODO 这里按照类别去修改
classes = ['code', 'specialcode', 'name', 'type', 'representative', 'range', 'registered', 'date', 'limit', 'address']
# TODO 这里按照实际XML文件夹路径去修改
xml_filepath = 'data/Annotations/'
# TODO 这里按照实际想要保存结果txt文件夹的路径去修改
labels_savepath = 'data/labels/'
abs_path = os.getcwd()def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open(xml_filepath + '%s.xml' % (image_id), encoding='UTF-8')out_file = open(labels_savepath + '%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')def run():total_xml = os.listdir(xml_filepath)num = len(total_xml)names = []for xml in total_xml:names.append(xml[:-4])for name in names:convert_annotation(name)passif __name__ == '__main__':run()pass

然后,根据JPEGlmage 文件夹和labels文件夹通过脚本deal_dataset.py将数据集划分为如下结构。

deal_dataset.py 代码如下:

import os
import random
import shutil# 原数据集目录
root_dir = 'data/'
# 划分比例
train_ratio = 0.8
valid_ratio = 0.1
test_ratio = 0.1# 设置随机种子
random.seed(42)# TODo 这里按照实际数据集路径去修改
split_dir = 'data_new/'
os.makedirs(os.path.join(split_dir, 'train/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'train/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'valid/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'valid/labels'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/images'), exist_ok=True)
os.makedirs(os.path.join(split_dir, 'test/labels'), exist_ok=True)# TODo 这里按照实际数据集路径去修改
imgpath = "JPEGImage"
labelpath = "labels"
image_files = os.listdir(os.path.join(root_dir, imgpath))
image_files.sort(key=lambda x: int(x.split('.')[0]))
print(image_files)
label_files = os.listdir(os.path.join(root_dir, labelpath))
label_files.sort(key=lambda x: int(x.split('.')[0]))
print(label_files)
# 随机打乱文件列表
combined_files = list(zip(image_files, label_files))
random.shuffle(combined_files)
image_files_shuffled, label_files_shuffled = zip(*combined_files)
print(image_files_shuffled)
print(label_files_shuffled)
# 根据比例计算划分的边界索引
train_bound = int(train_ratio * len(image_files_shuffle

http://www.ppmy.cn/devtools/154711.html

相关文章

Haproxy入门学习二

一、Haproxy的算法 1.haproxy通过固定参数balance指明对后端服务器的调度算法,其中balance参数可以配置在listen或backend选项中 2.haproxy的调度算法分为静态和动态调度算法,其中有些算法可以根据参数在静态和动态算法中相互转换 3.静态算法&#xff1a…

【后端开发】字节跳动青训营Cloudwego脚手架

Cloudwego脚手架使用 cwgo脚手架 cwgo脚手架 安装的命令: GOPROXYhttps://goproxy.cn/,direct go install github.com/cloudwego/cwgolatest依赖thriftgo的安装: go install github.com/cloudwego/thriftgolatest编辑echo.thrift文件用于生成项目&…

C语言小任务——寻找水仙花数

介绍水仙花数: 首先,它是一个3 位数,而且它的每个数位上的数字的 3次幂之和等于它本身 例如1531^35^33^3112527 步骤: 第一步:分离出这个三位数的三个数字 void getnum(int num , int* arr) {int i 0;for (i 0;…

QT:图像上绘制图形

需求描述 1、展示一张图像 2、在图像上可以使用数据绘制图像:矩形、不规则图形、线条 3、有按键可以选择 概要设计 规划布局如下 1、左边是Qlabel 用于展示图片 2、右边是三个按钮 具体实现 1、 首先设计 UI 界面,对控件进行布局 在 mainwindow.u…

字符串算法笔记

字符串笔记 说到字符串,首先我们要注意的就是字符串的输入以及输出,因为字符串的输入格式以及要求也分为很多种,我们就来说几个比较常见的格式 g e t s gets gets 我们先来说这个函数的含义

Brave132 编译指南 Windows 篇:配置 Git(四)

1. 引言 在 Brave 浏览器 132 版本的开发流程中,Git 作为核心的版本控制工具,发挥着至关重要的作用。作为业界主流的分布式版本控制系统,Git 为开发者提供了强大的源代码管理能力。借助 Git,您可以轻松追踪代码的每一次变更、管理…

对顾客行为的数据分析:融入2+1链动模式、AI智能名片与S2B2C商城小程序的新视角

摘要:随着互联网技术的飞速发展,企业与顾客之间的交互方式变得日益多样化,移动设备、社交媒体、门店、电子商务网站等交互点应运而生。这些交互点不仅为顾客提供了便捷的服务体验,同时也为企业积累了大量的顾客行为数据。本文旨在…

【JavaEE】-- 计算机是如何工作的

文章目录 1. 冯诺依曼体系(VonNeumann Architecture)2. CPU 基本工作流程2.1 寄存器(Register)和 内存(RAM)2.2 控制单元 CU(ControlUnit)2.3 指令(Instruction) 3. 操作系统(OperatingSystem)3.1 操作系统的定位3.2 什么是进程/任务(Process…