梯度提升决策树树(GBDT)公式推导

devtools/2025/1/26 11:58:57/

### 逻辑回归的损失函数

逻辑回归模型用于分类问题,其输出是一个概率值。对于二分类问题,逻辑回归模型的输出可以表示为:

\[ P(y = 1 | x) = \frac{1}{1 + e^{-F(x)}} \]

其中 \( F(x) \) 是一个线性组合函数,通常表示为:

\[ F(x) = \sum_{m=0}^{M} h_m(x) \]

这里的 \( h_m(x) \) 是学习到的决策树

### 损失函数的推导

对于单个样本 \((x_i, y_i)\),逻辑回归的损失函数通常采用对数似然损失(也称为交叉熵损失),定义如下:

\[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]

其中:
- \( \hat{y}_i \) 是模型预测的概率。
- \( y_i \) 是实际的标签(0 或 1)。

### GBDT 中的损失函数

在 GBDT 中,我们假设第 \( k \) 步迭代之后当前学习器为 \( F(x) \),则损失函数可以写为:

\[ \text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

### 推导步骤

1. **定义预测概率**:
   \[ \hat{y}_i = \frac{1}{1 + e^{-F(x_i)}} \]

2. **代入损失函数**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \hat{y}_i - (1 - y_i) \log (1 - \hat{y}_i) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-F(x_i)}}\right) \]

3. **简化表达式**:
   \[ \text{loss}(x_i, y_i) = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \log \left(\frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}\right) \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[\log(e^{-F(x_i)}) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = -y_i \log \left(\frac{1}{1 + e^{-F(x_i)}}\right) - (1 - y_i) \left[-F(x_i) - \log(1 + e^{-F(x_i)})\right] \]
   \[ = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \]

求梯度

为了求出给定损失函数的梯度,我们需要对损失函数关于 \( F(x_i) \) 求导。给定的损失函数是:

\[
\text{loss}(x_i, y_i | F(x)) = y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right]
\]

我们分两部分来计算梯度:

1. 对于第一部分 \( y_i \log \left(1 + e^{-F(x_i)}\right) \)
2. 对于第二部分 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \)

### 第一部分的梯度

对于 \( y_i \log \left(1 + e^{-F(x_i)}\right) \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right]
\]

使用链式法则:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) \right] = y_i \cdot \frac{\partial}{\partial F(x_i)} \left[ \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= y_i \cdot \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)})
\]

\[
= y_i \cdot \frac{-e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

### 第二部分的梯度

对于 \( (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \),我们对其求导:

\[
\frac{\partial}{\partial F(x_i)} \left[ (1 - y_i) \left(F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{\partial}{\partial F(x_i)} F(x_i) + \frac{\partial}{\partial F(x_i)} \log \left(1 + e^{-F(x_i)}\right) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 + \frac{1}{1 + e^{-F(x_i)}} \cdot (-e^{-F(x_i)}) \right]
\]

\[
= (1 - y_i) \cdot \left[ 1 - \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1 + e^{-F(x_i)} - e^{-F(x_i)}}{1 + e^{-F(x_i)}} \right]
\]

\[
= (1 - y_i) \cdot \left[ \frac{1}{1 + e^{-F(x_i)}} \right]
\]

### 合并两部分

将两部分合并起来:

\[
\frac{\partial}{\partial F(x_i)} \left[ y_i \log \left(1 + e^{-F(x_i)}\right) + (1 - y_i) \left[F(x_i) + \log \left(1 + e^{-F(x_i)}\right)\right] \right]
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + (1 - y_i) \cdot \frac{1}{1 + e^{-F(x_i)}}
\]

\[
= -y_i \cdot \frac{e^{-F(x_i)}}{1 + e^{-F(x_i)}} + \frac{1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{-y_i e^{-F(x_i)} + 1 - y_i}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

\[
= \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

最终得到的梯度为:

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1 - y_i - y_i e^{-F(x_i)}}{1 + e^{-F(x_i)}}
\]

简化

\[
\frac{\partial \text{loss}}{\partial F(x_i)} = \frac{1}{1 + e^{-F(x_i)}} - y_i
\]

### 总结

通过上述推导,我们可以看到逻辑回归的损失函数如何被应用于 GBDT 中。在每一步迭代中,GBDT 会根据当前模型的预测和实际标签之间的差异来更新新的弱学习器(通常是决策树),从而逐步减少损失函数的值。

这个过程确保了模型能够逐步逼近最优解,同时通过负梯度方向进行参数更新,有效地减少了损失函数的值。


http://www.ppmy.cn/devtools/153170.html

相关文章

20_PlayerPresKey类

修改前 修改后 创建PlayerPrefsKey.cs 编写代码 public static class PlayerPrefsKey{public static readonly string Acct "Acct"; // 账号键名public static readonly string Pass "Pass"; // 密码键名 }重新编写 这样写的好处是将变量存储到一个共有…

使用EVE-NG-锐捷实现静态路由

一、项目拓扑 二、项目实现 1、路由器R1配置 进入特权模式 enable 进入全局模式 configure terminal更改名称为R1 hostname R1关闭域名解析。在域名解析开启的情况下,输错的命令会当做域名进行解析,卡住30秒左右,直至解析超时 …

mysql 计算2个时间段之间的间距

一、计算2个时间之间的间隔 select TIMESTAMPDIFF(year, 2024-12-30 ,now()) select TIMESTAMPDIFF(month, 2024-12-30 ,now()) select TIMESTAMPDIFF(day, 2024-12-30 ,now()) 二、按照年、月、周 分组统计 SELECT YEAR(create_time) AS order_year,WEEK(create_time, 1) A…

MyBatis最佳实践:注解开发

注解: Insert:添加Update:修改Delete:删除Select:查询Result:实现结果集封装Results:可以和 Reslult 一起使用,封装多个结果集One:实现一对一和多对一的结果集封装Many&a…

前端缓存策略:强缓存与协商缓存深度剖析

通常我们利用缓存是提高用户体验、减少网络请求、提高页面加载速度。 正确使用缓存策略,能显著减少服务器负担,同时加速资源加载。 前端缓存主要有两种类型:强缓存和协商缓存。 一、强缓存(Cache-Control & Expires&#x…

Java面试题2025-Mysql

1.什么是BufferPool? Buffer Pool基本概念 Buffer Pool:缓冲池,简称BP。其作用是用来缓存表数据与索引数据,减少磁盘IO操作,提升效率。 Buffer Pool由缓存数据页(Page) 和 对缓存数据页进行描述的控制块 组成, 控制…

【数据可视化】全国星巴克门店可视化

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…

FPGA实现任意角度视频旋转(二)视频90度/270度无裁剪旋转

本文主要介绍如何基于FPGA实现视频的90度/270度无裁剪旋转,关于视频180度实时旋转,请见本专栏前面的文章,旋转效果示意图如下: 为了实时对比旋转效果,采用分屏显示进行处理,左边代表旋转前的视频在屏幕中…