【深度学习】神经网络之Softmax

devtools/2025/1/23 0:48:51/

Softmax 函数神经网络中常用的一种激活函数,尤其在分类问题中广泛应用。它将一个实数向量转换为概率分布,使得每个输出值都位于 [0, 1] 之间,并且所有输出值的和为 1。这样,Softmax 可以用来表示各类别的预测概率。

Softmax 函数的定义

给定一个实数向量 z=[z1,z2,…,zn],Softmax 函数的输出是一个概率分布,定义如下:

其中:

  • zi是输入向量 z 中的第 i 个元素。
  • ezi是 zi 的指数。
  • 分母是对所有元素的指数进行求和,确保输出的概率和为 1。

Softmax 的特点

  1. 输出范围:每个输出值在 [0, 1] 之间,适合作为概率。
  2. 归一化:所有输出的和为 1,这使得输出可以视为概率。
  3. 强化最大值:Softmax 将输入向量中最大的元素映射为最大的概率,通常用于多分类问题的最终输出层。

应用场景

  1. 多类分类问题:在神经网络的输出层,Softmax 通常用于多分类问题,例如图像分类、文本分类等。它将每个类别的原始预测值(即神经网络的输出)转换为概率,从而能够判断输入属于每个类别的概率。
  2. 回归任务:虽然 Softmax 主要用于分类问题,但在某些情况下它也可以应用于回归任务中的概率预测。

计算示例

假设有一个网络的输出向量 z=[2,1,0.1],我们想计算该向量通过 Softmax 函数后的输出:

  1. 计算每个 e^{z_i}:

    • e2≈7.389e^2
    • e1≈2.718e^1 
    • e0.1≈1.105e^{0.1} 
  2. 求和:

  3. 计算每个类别的概率:

最终,Softmax 输出的概率分布为 [0.659,0.242,0.099],即该网络认为输入属于第一个类别的概率为 65.9%,属于第二个类别的概率为 24.2%,属于第三个类别的概率为 9.9%。

总结

Softmax 是神经网络中用于多类分类问题的常见激活函数,通过将网络的输出转化为概率分布,帮助我们理解模型的预测结果,并且通过概率值判断输入属于各类别的可能性。


http://www.ppmy.cn/devtools/152731.html

相关文章

Docker:基于自制openjdk8镜像 or 官方openjdk8镜像,制作tomcat镜像

一、制作openjdk8基础镜像【基于自定义alpine-3.18.0:v1 】 docker pull maven:3.5.0-jdk-8-alpine 78.56 MB https://hub.docker.com/_/maven/tagspage8&namealpine openjdk二进制下载地址 https://blog.csdn.net/fenglllle/article/details/124786948 https://adoptope…

商汤善惠获金沙江创投领投A轮融资,聚焦零售AI业务

1月20日,商汤善惠宣布完成A轮融资,本轮融资由金沙江创投数千万元领投,微木资本、嘉实基金和金弘基金等知名资管平台和产业资本数千万元跟投,鞍羽资本担任长期财务顾问。 此次融资将重点投向零售AI算法研发创新、海外市场拓展战略…

机器学习皮马印第安人糖尿病数据集预测报告

目录 1.项目选题与设计方案 1.1项目选题 1.2设计方案 2.功能实现 2.1 主要功能介绍 2.2 开发环境及平台介绍 2.3 实现过程 2.3.1数据分析 2.3.2算法设计 2.3.3 python代码 3.个人心得体会 1.项目选题与设计方案 1.1项目选题 我国的糖尿病患者初诊时约8&a…

【计算机视觉】人脸识别

一、简介 人脸识别是将图像或者视频帧中的人脸与数据库中的人脸进行对比,判断输入人脸是否与数据库中的某一张人脸匹配,即判断输入人脸是谁或者判断输入人脸是否是数据库中的某个人。 人脸识别属于1:N的比对,输入人脸身份是1&…

【深度学习】3.损失函数的作用

损失函数的作用 假设把猫这张图片分成四个像素点,分别为:56、231、24、2(实际应该是三维的,因为还有颜色通道的维度,这里简化成二维)。 像素点拿到以后,进行三分类,粉红色为第一组W…

kafka学习笔记2 —— 筑梦之路

KRaft模式 Kafka的KRaft模式是一种新的元数据管理方式,旨在去除对ZooKeeper的依赖,使Kafka成为一个完全自包含的系统。在Kafka的传统模式下,元数据管理依赖于ZooKeeper,这增加了部署和运维的复杂性。为了解决这个问题,…

人类大脑与大规模神经网络的对比及未来展望

引言 随着人工智能(AI)技术的迅猛发展,研究人员不断尝试构建更加复杂和强大的模型,以期实现与人类大脑相媲美的智能水平。本文将探讨当前大规模神经网络(LLM, Large Language Models)的发展现状&#xff0…

vue md5加密

在Vue中使用MD5加密&#xff0c;你可以使用第三方库如crypto-js。首先&#xff0c;你需要安装这个库&#xff1a; npm install crypto-js --save然后&#xff0c;在你的Vue组件中引入crypto-js并使用其MD5功能&#xff1a; <template><div><input v-model&quo…