深度学习 Pytorch 张量的索引、分片、合并以及维度调整

devtools/2025/1/19 19:21:14/

张量作为有序的序列,也是具备数值索引的功能,并且基本索引方法和python原生的列表、numpy中的数组基本一致。

不同的是,pytorch中还定义了一种采用函数来进行索引的方式。

作为pytorch中的基本数据类型,张量既具备了列表、数组的基本功能,同时还充当向量、矩阵等重要数据结构。因此pytorch中也设置了非常晚辈的张量合并与变换的操作。

python">import torch	# 导入torch
import numpy as np	# 导入numpy

6 张量的符号索引

6.1 一维张量索引

一维张量的索引过程和python原生对象类型的索引一致,基本格式遵循[start: end: step]

python">t1 = torch.arange(1, 11)	# 创建一维张量

从左到右,从零开始

python">t1[0]
# output : tensor(1)

**注:**张量索引出来的结果还是零维张量,而不是单独的数。

​ 要转化成单独的数,需要使用.item()方法


冒号分割,表示对某个区域进行索引,也就是所谓的切片

python">t1[1: 8]	# 索引其中2-9号元素,并且左闭右开
# output : tensor([2, 3, 4, 5, 6, 7, 8])

第二个冒号,表示索引的间隔

python">t1[1: 8: 2]		# 第三个参数表示每两个数取一个
# output : tensor([2, 4, 6, 8])

冒号前后没有值,表示索引这个区域

python">t1[1: : 2]		# 从第二个元素开始索引,一致到结尾,并且每隔两个取一个
# output : tensor([ 2,  4,  6,  8, 10])
python">t1[: 8: 2]		#从第一个元素开始索引到第九个元素(不包含),并且每隔两个数取一个
# output : tensor([1, 3, 5, 7])

在张量的索引中,step位必须大于0,也就是说不能逆序取数。


6.2 二维张量索引

二维张量的索引逻辑和一维张量基本相同,二维张量可以视为两个一维张量组合而成。

在实际的索引过程中,需要用逗号进行分割,表示分别对哪个一维张量进行索引、以及具体的一维张量的索引。

python">t2 = torch.arange(1, 10).reshape(3, 3)		# 创建二维张量
python">t2[0, 1]	# 表示索引第一行、第二列的元素
# output : tensor(2)
python">t2[0, : : 2]	# 表示索引第一行、每隔两个元素取一个
# output : tensor([1, 3])
python">t2[0, [0, 2]]	# 索引结果同上
python">t2[: : 2, : : 2]	# 表示每隔两行取一行、并且每一行中每隔两个元素取一个
# output : 
tensor([[1, 3],[7, 9]])
python">t2[[0, 2], 1]	# 索引第一行、第三行、第二列的元素
# output : tensor([2, 8])

6.3 三维张量索引

我们可以将三维张量视作矩阵组成的序列,则在索引过程中拥有三个维度,分别是索引矩阵,索引矩阵的行、索引矩阵的列。

python">t3 = torch.arange(1, 28).reshape(3, 3, 3)	# 创建三维张量
python">t3[1, 1, 1]		# 索引第二个矩阵中,第二行、第二个元素
# output : tensor(14)
python">t3[1, : : 2, : : 2]		#索引第二个矩阵,行和列都是每隔两个取一个
# output : 
tensor([[10, 12],[16, 18]])
python"># 每隔两个取一个矩阵,对于每个矩阵来说,行和列都是每隔两个取一个
t3[: : 2, : : 2, : : 2]		
# output : 
tensor([[[ 1,  3],[ 7,  9]],[[19, 21],[25, 27]]])

7 张量的函数索引

pytorch中,我们还可以使用index_select函数,通过指定index来对张量进行索引。

python">t1 = torch.arange(1, 11)
indices = torch.tensor([1, 2])
torch.index_select(t1, 0, indices)
# output : tensor([2, 3])

第二个参数dim代表索引的维度。

对于t1这个一维向量来说,由于只有一个维度,因此第二个参数化取值为0,代表在第一个维度上进行索引。


python">t2 = torch.arange(12).reshape(4,3)
t2
# output :
tensor([[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])
indices = torch.tensor([1, 2])# dim参数取值为0,代表在shape的第一个维度上索引
torch.index_select(t2, 0, indices)	
# output : 
tensor([[3, 4, 5],[6, 7, 8]])# dim参数取值为0,代表在shape的第二个维度上索引
torch.index_select(t2, 1, indices)	
# output : 
tensor([[ 1,  2],[ 4,  5],[ 7,  8],[10, 11]])

8 tensor.view()方法

该方法会返回一个类似视图的结果,且该结果会和原张量对象共享一块数据存储空间

通过.view()方法,还可以改变对象结构,生成一个不同结构、但共享一个存储空间的张量。

python">t = torch.arange(6).reshape(2, 3)
t
# output :
tensor([[0, 1, 2],[3, 4, 5]])
python"># 构建一个数据相同,但形状不同的“视图”
te = t.view(3, 2)	
te
# output :
tensor([[0, 1],[2, 3],[4, 5]])

当然,共享一个存储空间,也就代表二者是浅拷贝的关系,修改其中一个,另一个也会同步更改。

python">t[0] = 1
te
# output :
tensor([[1, 1],[1, 3],[4, 5]])

当然,维度也可以修改

python">tr = t.view(1, 2, 3)
tr
# output :
tensor([[[1, 1, 1],[3, 4, 5]]])

视图的作用就是节省空间,在接下来介绍的很多切分张量的方法中,返回结果都是“视图”,而不是新生成一个对象。


9 张量的分片函数

9.1 分块:chunk函数

chunk函数能够按照某维度,对张量进行均匀切分,返回结果是原张量的视图

python">t2 = torch.arange(12).reshape(4, 3)
t2
# output :
tensor([[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])
python"># 在第零个维度上,按行进行四等分
tc = torch.chunk(t2, 4, dim = 0)
tc
# output :
(tensor([[0, 1, 2]]),tensor([[3, 4, 5]]),tensor([[6, 7, 8]]),tensor([[ 9, 10, 11]]))

注:chunk返回结果是一个视图,不是新生成了一个对象

python">tc[0][0][0] = 1		# 修改tc中的值
t2
# output :
tensor([[ 1,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])

当原张量不能均分时,chunk不会报错,但会返回其他均分结果。

python">torch.chunk(t2, 3, dim = 0)	# 返回次一级均分结果
# output :
(tensor([[1, 1, 2],[3, 4, 5]]),tensor([[ 6,  7,  8],[ 9, 10, 11]]))
python">torch.chunk(t2, 5, dim = 0)	# 返回次一级均分结果
# output :
(tensor([[1, 1, 2]]),tensor([[3, 4, 5]]),tensor([[6, 7, 8]]),tensor([[ 9, 10, 11]]))

9.2 拆分 :split函数

split既能进行均分,也能自定义切分

python">t2 = torch.arange(12).reshape(4, 3)
t2
# output :
tensor([[ 0,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])

第二个参数只输入一个数值时表示均分,第三个参数表示按第几个维度进行切分

python">torch.split(t2, 2, 0)
# output :
(tensor([[1, 1, 2],[3, 4, 5]]),tensor([[ 6,  7,  8],[ 9, 10, 11]]))

第二个参数输入一个序列时,表示按照序列数值进行切分

python">torch.split(t2, [1, 3], 0)
# output :
(tensor([[1, 1, 2]]),tensor([[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]]))

当第二个参数输入一个序列时,序列的各数值的和必须等于对于维度下形状分量的取值。

例如,上述代码中是按照第一个维度进行切分,第一个维度有四行,因此序列的求和必须等于4,也就是1 + 3 = 4


序列中每个分量的取值表示切块大小

python">torch.split(t2,[1, 1, 1, 1], 0)
# output :
(tensor([[1, 1, 2]]),tensor([[3, 4, 5]]),tensor([[6, 7, 8]]),tensor([[ 9, 10, 11]]))
python">torch.split(t2,[1, 2], 1)
# output :
(tensor([[1],[3],[6],[9]]),tensor([[ 1,  2],[ 4,  5],[ 7,  8],[10, 11]]))

当然,split函数返回结果也是view

python">ts = torch.split(t2,[1, 2], 1)
ts[0][0] = 1
t2
# output :
tensor([[ 1,  1,  2],[ 3,  4,  5],[ 6,  7,  8],[ 9, 10, 11]])

10 张量的合并操作

张量的合并操作类似列表的追加元素,可以拼接、也可以堆叠。

拼接函数:cat

python">a = torch.zeros(2, 3)
b = torch.ones(2, 3)
c = torch.zeros(3, 3)
python"># dim默认取值为0,按行进行拼接
torch.cat([a, b])	
# output :
tensor([[0., 0., 0.],[0., 0., 0.],[1., 1., 1.],[1., 1., 1.]])
python"># 按列进行拼接
torch.cat([a, b], 1)	
# output :
tensor([[0., 0., 0., 1., 1., 1.],[0., 0., 0., 1., 1., 1.]])
python"># 形状不匹配时将报错
torch.cat([a, c], 1)
# output :
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 2 but got size 3 for tensor number 1 in the list.

拼接的本质是实现元素的堆积,也就是构成a、b两个二维张量的各一维张量的堆积,最终还是构成二维向量


堆叠函数:stack

python">a = torch.zeros(2, 3)
b = torch.ones(2, 3)
c = torch.zeros(3, 3)
python"># 堆叠之后,生成一个三维张量
torch.stack([a,b])
# output :
tensor([[[0., 0., 0.],[0., 0., 0.]],[[1., 1., 1.],[1., 1., 1.]]])

注意对比和**cat**函数的区别,拼接之后维度不变,堆叠之后维度升高

对于两个二维张量,拼接是把一个个元素单独提取出来之后放到二维张量中,而堆叠则是直接将两个二维张量封装到一个三维张量中。

因此,堆叠的要求更高,参与堆叠的张量必须形状完全相同

python"># 维度不匹配将报错
torch.stack([a, c])
# output :
RuntimeError: stack expects each tensor to be equal size, but got [2, 3] at entry 0 and [3, 3] at entry 1

11 张量维度变换

在实际操作张量进行计算时,往往需要另外进行降维和升维的操作。

squeeze函数:删除不必要的维度

python">t = torch.zeros(1, 1, 3, 1)
# output :
tensor([[[[0.],[0.],[0.]]]])
python">t.shape
# output :
torch.Size([1, 1, 3, 1])
python">torch.squeeze(t)
# output :
tensor([0., 0., 0.])
python">torch.squeeze(t).shape
# output :
torch.Size([3])

简单理解,squeeze就相对于提出了shape返回结果中的1.

python">t1 = torch.zeros(1, 1, 3, 2, 1, 2)
torch.squeeze(t1)
torch.squeeze(t1).shape
# output :
torch.Size([3, 2, 2])

unsqueeze函数:手动升维

python">t = torch.zeros(1, 2, 1, 2)
t.shape
# output :
torch.Size([1, 2, 1, 2])
python"># 在第1个维度索引上升高1个维度
torch.unsqueeze(t, dim = 0)
# output :
tensor([[[[[0., 0.]],[[0., 0.]]]]])
python">torch.unsqueeze(t, dim = 0).shape
# output :
torch.Size([1, 1, 2, 1, 2])
python"># 在第3个维度索引上升高1个维度
torch.unsqueeze(t, dim = 2).shape
# output :
torch.Size([1, 2, 1, 1, 2])

注意理解维度和shape返回结果一一对应的关系,shape返回的序列有多少元素,张量就有多少维度。


http://www.ppmy.cn/devtools/151893.html

相关文章

软件定义网络(SDN):让网络管理更加方便

什么是SDN? SDN是一种革命性的网络架构,通过分离网络的控制层与数据层,实现了对网络行为的高度可编程性。这意味着网络管理员不再需要逐个设备地进行配置,而是可以通过集中式的控制器来动态调整整个网络的行为。这种设计使得网络…

C++(二十二)

前言: 本文承接上文,将详细讲述C中,参数与指针。 一,无响应参数。 首先复习一下之前曾学习过的函数: void change(int a,int b) { int temp; tempa; ab; btemp; } 看起来是一个简单的交换a与b值的函数。 完整代…

Hive集群的安装准备

Hive的安装与集群部署详细指南 一、环境与软件准备 在开始Hive的安装与集群部署之前,确保您准备好以下环境和软件: 虚拟机软件: VMware Workstation 17.5:用于创建和管理虚拟机,确保可以在其上安装Linux操作系统。 …

天童教育:怎样建立稳固的亲子关系

在孩子成长的岁月里,稳固的亲子关系宛如温暖的港湾,为孩子遮风挡雨,给予他们心灵的慰藉和安全感。哈尔滨天童教育相信,良好的亲子关系不仅能让孩子感受到爱与关怀,更是孩子健康成长、人格塑造的重要基石。 然而&#…

第三章、python中的对象、变量、标识符、作用域、引用(调用)及地址的概念(3.1-3.2)------内存地址、创建对象、对象的类型及对象的划分问题

第三章、python中的对象、变量、标识符、作用域、引用(调用)及地址的概念 本章讲述编程中对象、变量、地址的基本概念及其之间的关系,可迭代对象、可变对象、不可变对象的特点。

IEC103 转 ModbusTCP 网关

一、产品概述 IEC103 转 ModbusTCP 网关型号 SG-TCP-IEC103 ,是三格电子推出的工业级网关(以下简 称网关),主要用于 IEC103 数据采集、 DLT645-1997/2007 数据采集, IEC103 支持遥测和遥 信,可接…

3d系统误差分析

系统标定重投影误差预估 在计算机视觉和三维重建领域中,评估一个相机系统标定精度的重要指标。通过比较真实的三维点在图像中的投影位置与标定模型计算出的投影位置之间的差异,来衡量标定的准确性。 以下是对这一概念的详细解析: 什么是系统…

浅谈云计算21 | Docker容器技术

Docker容器技术 一、 容器技术特性1.1 轻量级特性1.2 隔离性特性 二、容器镜像2.1 容器镜像概述2.1.1 定义与构成2.1.2 分层结构 2.2 联合文件系统2.3 容器镜像的构建与管理2.3.1 容器镜像的构建2.3.2 **构建镜像流程**2.3.3 **应用场景**2.3.4 镜像仓库的应用 2.4 容器镜像的优…