openharmony标准系统芯片移植指导

devtools/2025/1/19 4:11:45/

标准系统移植指南

本文描述了移植一块开发板的通用步骤,和具体芯片相关的详细移植过程无法在此一一列举。后续社区还会陆续发布开发板移植的实例供开发者参考。

定义开发板

本文以移植名为MyProduct的开发板为例讲解移植过程,假定MyProduct是MyProductVendor公司的开发板,使用MySoCVendor公司生产的MySOC芯片作为处理器。

定义产品

//vendor/MyProductVendor/{product_name}名称的目录下创建一个config.json文件,该文件用于描述产品所使用的SOC 以及所需的子系统。配置如下:

//vendor/MyProductVendor/MyProduct/config.json

{"product_name": "MyProduct","version": "3.0","type": "standard","target_cpu": "arm","ohos_version": "OpenHarmony 1.0","device_company": "MyProductVendor","board": "MySOC","enable_ramdisk": true,"subsystems": [{"subsystem": "ace","components": [{ "component": "ace_engine_lite", "features":[] }]},...]
}

主要的配置内容

配置项说明
product_name(必填)产品名称
version(必填)版本
type(必填)配置的系统级别,包含(small、standard等)
target_cpu(必填)设备的CPU类型(根据实际情况,这里的target_cpu也可能是arm64 、riscv、 x86等)
ohos_version(选填)操作系统版本
device_company(必填)device厂商名
board(必填)开发板名称
enable_ramdisk(必填)是否启动ramdisk
kernel_type(选填)内核类型
kernel_version(选填)kernel_type与kernel_version在standard是固定的不需要写
subsystems(必填)系统需要启用的子系统。子系统可以简单理解为一块独立构建的功能块。
product_company不体现在配置中,而是目录名,vendor下一级目录就是product_company,BUILD.gn脚本依然可以访问。

已定义的子系统可以在“//build/subsystem_config.json”中找到。当然你也可以定制子系统。

这里建议先拷贝Hi3516DV300 开发板的配置文件,删除掉 hisilicon_products 这个子系统。这个子系统为Hi3516DV300 SOC编译内核,显然不适合MySOC。

移植验证

至此,你可以使用如下命令,启动你产品的构建了:

./build.sh --product-name MyProduct 

构建完成后,可以在//out/{device_name}/packages/phone/images目录下看到构建出来的OpenHarmony镜像文件。

内核移植

这一步需要移植Linux内核,让Linux内核可以成功运行起来。

为SOC添加内核构建的子系统

修改文件//build/subsystem_config.json增加一个子系统。配置如下:

  "MySOCVendor_products": {"project": "hmf/MySOCVendor_products","path": "device/MySOCVendor/MySOC/build","name": "MySOCVendor_products","dir": "device/MySOCVendor"},

接着需要修改定义产品的配置文件//vendor/MyProductVendor/MyProduct/config.json,将刚刚定义的子系统加入到产品中。

编译内核

源码中提供了Linux 4.19的内核,归档在//kernel/linux-4.19。本节以该内核版本为例,讲解如何编译内核。

在子系统的定义中,描述了子系统构建的路径path,即//device/MySOCVendor/MySOC/build。这一节会在这个目录创建构建脚本,告诉构建系统如何构建内核。

建议的目录结构:

├── build
│ ├── kernel
│ │     ├── linux
│ │           ├──standard_patch_for_4_19.patch // 基于4.19版本内核的补丁
│ ├── BUILD.gn
│ ├── ohos.build

BUILD.gn是subsystem构建的唯一入口。

期望的构建结果

文件文件说明
$root_build_dir/packages/phone/images/uImage内核镜像
$root_build_dir/packages/phone/images/ubootbootloader镜像

移植验证

启动编译,验证预期的kernel镜像是否成功生成。

用户态启动引导

  1. 用户态进程启动引导总览。

    zh-cn_image_0000001199805369

    系统上电加载内核后,按照以下流程完成系统各个服务和应用的启动:

    1. 内核启动init进程,一般在bootloader启动内核时通过设置内核的cmdline来指定init的位置;如上图所示的"init=/init root/dev/xxx"。
    2. init进程启动后,会挂载tmpfs,procfs,创建基本的dev设备节点,提供最基本的根文件系统。
    3. init继续启动ueventd监听内核热插拔事件,为这些设备创建dev设备节点;包括block设备各个分区设备都是通过此事件创建。
    4. init进程挂载block设备各个分区(system,vendor),开始扫描各个系统服务的init启动脚本,并拉起各个SA服务。
    5. samgr是各个SA的服务注册中心,每个SA启动时,都需要向samgr注册,每个SA会分配一个ID,应用可以通过该ID访问SA。
    6. foundation是一个特殊的SA服务进程,提供了用户程序管理框架及基础服务;由该进程负责应用的生命周期管理。
    7. 由于应用都需要加载JS的运行环境,涉及大量准备工作,因此appspawn作为应用的孵化器,在接收到foundation里的应用启动请求时,可以直接孵化出应用进程,减少应用启动时间。
  2. init。

    init启动引导组件配置文件包含了所有需要由init进程启动的系统关键服务的服务名、可执行文件路径、权限和其他信息。每个系统服务各自安装其启动脚本到/system/etc/init目录下。

    新芯片平台移植时,平台相关的初始化配置需要增加平台相关的初始化配置文件/vendor/etc/init/init.{hardware}.cfg;该文件完成平台相关的初始化设置,如安装ko驱动,设置平台相关的/proc节点信息。

    init相关进程代码在//base/startup/init_lite目录下,该进程是系统第一个进程,无其它依赖。

    初始化配置文件具体的开发指导请参考 init启动子系统概述。

HDF驱动移植

LCD

HDF为LCD设计了驱动模型。支持一块新的LCD,需要编写一个驱动,在驱动中生成模型的实例,并完成注册。

这些LCD的驱动被放置在//drivers/hdf_core/framework/model/display/driver/panel目录中。

  1. 创建Panel驱动

    在驱动的Init方法中,需要调用RegisterPanel接口注册模型实例。如:

    int32_t XXXInit(struct HdfDeviceObject *object)
    {struct PanelData *panel = CreateYourPanel();// 注册if (RegisterPanel(panel) != HDF_SUCCESS) {HDF_LOGE("%s: RegisterPanel failed", __func__);return HDF_FAILURE;}return HDF_SUCCESS;
    }struct HdfDriverEntry g_xxxxDevEntry = {.moduleVersion = 1,.moduleName = "LCD_XXXX",.Init = XXXInit,
    };HDF_INIT(g_xxxxDevEntry);
    
  2. 配置加载panel驱动产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在display的host中,名为device_lcd的device中增加配置。

    注意:moduleName要与panel驱动中的moduleName相同。

    root {...display :: host {device_lcd :: device {deviceN :: deviceNode {policy = 0;priority = 100;preload = 2;moduleName = "LCD_XXXX";}}}
    }
    

    更详细的驱动开发指导,请参考LCD。

触摸屏

本节描述如何移植触摸屏驱动。触摸屏的驱动被放置在//drivers/hdf_core/framework/model/input/driver/touchscreen目录中。移植触摸屏驱动主要工作是向系统注册ChipDevice模型实例。

  1. 创建触摸屏器件驱动

    在目录中创建名为touch_ic_name.c的文件。代码模板如下:注意:请替换ic_name为你所适配芯片的名称。

    #include "hdf_touch.h"static int32_t HdfXXXXChipInit(struct HdfDeviceObject *device)
    {ChipDevice *tpImpl = CreateXXXXTpImpl();if(RegisterChipDevice(tpImpl) != HDF_SUCCESS) {ReleaseXXXXTpImpl(tpImpl);return HDF_FAILURE;}return HDF_SUCCESS;
    }struct HdfDriverEntry g_touchXXXXChipEntry = {.moduleVersion = 1,.moduleName = "HDF_TOUCH_XXXX",.Init = HdfXXXXChipInit,
    };HDF_INIT(g_touchXXXXChipEntry);
    

    其中ChipDevice中要提供若干方法。

    方法实现说明
    int32_t (*Init)(ChipDevice *device)器件初始化
    int32_t (*Detect)(ChipDevice *device)器件探测
    int32_t (*Suspend)(ChipDevice *device)器件休眠
    int32_t (*Resume)(ChipDevice *device)器件唤醒
    int32_t (*DataHandle)(ChipDevice *device)从器件读取数据,将触摸点数据填写入device->driver->frameData中
    int32_t (*UpdateFirmware)(ChipDevice *device)固件升级
  2. 配置产品,加载器件驱动

    产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在名为input的host中,名为device_touch_chip的device中增加配置。注意:moduleName 要与触摸屏驱动中的moduleName相同。

    deviceN :: deviceNode {policy = 0;priority = 130;preload = 0;permission = 0660;moduleName = "HDF_TOUCH_XXXX";deviceMatchAttr = "touch_XXXX_configs";
    }
    

    更详细的驱动开发指导,请参考TOUCHSCREEN。

WLAN

Wi-Fi驱动分为两部分,一部分负责管理WLAN设备,另一个部分负责处理WLAN流量。HDF WLAN分别为这两部分做了抽象。目前支持SDIO接口的WLAN芯片。

图1 WLAN芯片

zh-cn_image_0000001188241031

支持一款芯片的主要工作是实现一个ChipDriver驱动。实现HDF_WLAN_CORE和NetDevice提供的接口。主要需要实现的接口有:

接口定义头文件说明
HdfChipDriverFactory//drivers/hdf_core/framework/include/wifi/hdf_wlan_chipdriver_manager.hChipDriver的Factory,用于支持一个芯片多个Wi-Fi端口
HdfChipDriver//drivers/hdf_core/framework/include/wifi/wifi_module.h每个WLAN端口对应一个HdfChipDriver,用来管理一个特定的WLAN端口
NetDeviceInterFace//drivers/hdf_core/framework/include/net/net_device.h与协议栈之间的接口,如发送数据、设置网络接口状态等

建议适配按如下步骤操作:

  1. 创建HDF驱动建议将代码放置在//device/MySoCVendor/peripheral/wifi/chip_name/,文件模板如下:

    static int32_t HdfWlanXXXChipDriverInit(struct HdfDeviceObject *device) {static struct HdfChipDriverFactory factory = CreateChipDriverFactory();struct HdfChipDriverManager *driverMgr = HdfWlanGetChipDriverMgr();if (driverMgr->RegChipDriver(&factory) != HDF_SUCCESS) {HDF_LOGE("%s fail: driverMgr is NULL!", __func__);return HDF_FAILURE;}return HDF_SUCCESS;
    }struct HdfDriverEntry g_hdfXXXChipEntry = {.moduleVersion = 1,.Init = HdfWlanXXXChipDriverInit,.Release = HdfWlanXXXChipRelease,.moduleName = "HDF_WIFI_CHIP_XXX"
    };HDF_INIT(g_hdfXXXChipEntry);
    

    在CreateChipDriverFactory中,需要创建一个HdfChipDriverFactory,接口如下:

    接口说明
    const char *driverName当前driverName
    int32_t (*InitChip)(struct HdfWlanDevice *device)初始化芯片
    int32_t (*DeinitChip)(struct HdfWlanDevice *device)去初始化芯片
    void (_ReleaseFactory)(struct HdfChipDriverFactory _factory)释放HdfChipDriverFactory对象
    struct HdfChipDriver _(_Build)(struct HdfWlanDevice *device, uint8_t ifIndex)创建一个HdfChipDriver;输入参数中,device是设备信息,ifIndex是当前创建的接口在这个芯片中的序号
    void (_Release)(struct HdfChipDriver _chipDriver)释放chipDriver
    uint8_t (*GetMaxIFCount)(struct HdfChipDriverFactory *factory)获取当前芯片支持的最大接口数

    HdfChipDriver需要实现的接口有:

    接口说明
    int32_t (*init)(struct HdfChipDriver *chipDriver, NetDevice *netDev)初始化当前网络接口,这里需要向netDev提供接口NetDeviceInterFace
    int32_t (*deinit)(struct HdfChipDriver *chipDriver, NetDevice *netDev)去初始化当前网络接口
    struct HdfMac80211BaseOps *opsWLAN基础能力接口集
    struct HdfMac80211STAOps *staOps支持STA模式所需的接口集
    struct HdfMac80211APOps *apOps支持AP模式所需要的接口集
  2. 编写配置文件,描述驱动支持的设备。

    在产品配置目录下创建芯片的配置文件//vendor/MyProductVendor/MyProduct/config/wifi/wlan_chip_chip_name.hcs

    注意: 路径中的vendor_name、product_name、chip_name请替换成实际名称。

    模板如下:

    root {wlan_config {chip_name :& chipList {chip_name :: chipInst {match_attr = "hdf_wlan_chips_chip_name"; /* 这是配置匹配属性,用于提供驱动的配置根 */driverName = "driverName"; /* 需要与HdfChipDriverFactory中的driverName相同*/sdio {vendorId = 0x0296;deviceId = [0x5347];}}}}
    }
    
  3. 编写配置文件,加载驱动。

    产品的所有设备信息被定义在文件//vendor/MyProductVendor/MyProduct/config/device_info/device_info.hcs中。修改该文件,在名为network的host中,名为device_wlan_chips的device中增加配置。

    注意:moduleName 要与触摸屏驱动中的moduleName相同。

    deviceN :: deviceNode {policy = 0;preload = 2;moduleName = "HDF_WLAN_CHIPS";deviceMatchAttr = "hdf_wlan_chips_chip_name";serviceName = "driverName";
    }
    
  4. 构建驱动

    • 创建内核菜单在//device/MySoCVendor/peripheral目录中创建Kconfig文件,内容模板如下:

      config DRIVERS_WLAN_XXXbool "Enable XXX WLAN Host driver"default ndepends on DRIVERS_HDF_WIFIhelpAnswer Y to enable XXX Host driver. Support chip xxx
      

      接着修改文件//drivers/hdf_core/adapter/khdf/linux/model/network/wifi/Kconfig,在文件末尾加入如下代码将配置菜单加入内核中,如:

      source "../../../../../device/MySoCVendor/peripheral/Kconfig"
      
    • 创建构建脚本

      //drivers/hdf_core/adapter/khdf/linux/model/network/wifi/Makefile文件末尾增加配置,模板如下:

      HDF_DEVICE_ROOT := $(HDF_DIR_PREFIX)/../device
      obj-$(CONFIG_DRIVERS_WLAN_XXX) += $(HDF_DEVICE_ROOT)/MySoCVendor/peripheral/build/standard/
      

      当在内核中开启DRIVERS_WLAN_XXX开关时,会调用//device/MySoCVendor/peripheral/build/standard/中的makefile。更多详细的开发手册,请参考WLAN开发。

开发移植示例

开发移植示例请参考DAYU开发板。


http://www.ppmy.cn/devtools/151736.html

相关文章

服务器迁移MySQL

由于公司原有的服务器不再使用,需要将老的服务器上的MySQL迁移到新的服务器上,因此需要对数据进行备份迁移,前提是两台服务器已安装相同版本的MySQL,这里就不再讲解MySQL的安装步骤了,可以安装包、可以在线下载、可以容…

如何构建优质的prompt

优化前: 帮我做一幅很好看的画,一只猫趴在透明的泡泡上,眼睛盯着前方看,泡泡上还打着光非常可爱,整体上是粉色系为主的动画风格 优化后: 画一幅画,呆萌的小猫躺在泡泡中,可爱温柔&am…

【新人系列】Python 入门(二十六):常见设计模式

✍ 个人博客:https://blog.csdn.net/Newin2020?typeblog 📝 专栏地址:https://blog.csdn.net/newin2020/category_12801353.html 📣 专栏定位:为 0 基础刚入门 Python 的小伙伴提供详细的讲解,也欢迎大佬们…

Java List过滤 Stream API filter() 应用

Java 8 前用 for-each 循环或 Iterator 处理集合,引入 Stream API 后可更简洁、声明式地处理集合,在复杂数据处理时更便捷 1. Stream与Filter基础 Stream 是从支持数据源获取数据的序列,有强大 API 可执行中间和最终操作,能内部…

RPC 简介

RPC(Remote Procedure Call,远程过程调用)是一种通过网络请求执行远程服务器上的代码的技术,使得开发者可以调用远程系统中的函数,就像调用本地函数一样。它隐藏了底层网络通信的细节,简化了分布式系统的开…

C++学习记录

本文章建立在已学C语言的基础上 第一阶段 生成随机数函数&#xff1a;rand()。rand()%100指的是生成0~99的随机数。这样生成的随机数每次都是一样顺序出现的&#xff0c;为了防止这个问题出现&#xff0c;我们可以使用随机数种子&#xff0c;如下代码 #include<iostream&…

使用 Golang 编译 Linux 可运行文件

Golang&#xff08;或 Go&#xff09;是一种开源编程语言&#xff0c;因其简单、高效、并发编程支持而备受欢迎。本文将详细介绍如何使用 Golang 编译生成可以在 Linux 上运行的可执行文件。 一、安装 Golang 1.1 下载 Golang 从 Golang 官方网站下载适合你操作系统的安装包…

【STM32-学习笔记-7-】USART串口通信

文章目录 USART串口通信Ⅰ、硬件电路Ⅱ、常见的电平标准Ⅲ、串口参数及时序Ⅳ、STM32的USART简介数据帧起始位侦测数据采样波特率发生器 Ⅴ、USART函数介绍Ⅵ、USART_InitTypeDef结构体参数1、USART_BaudRate2、USART_WordLength3、USART_StopBits4、USART_Parity5、USART_Mode…