PyTorch框架——基于深度学习YOLOv11神经网络路面坑洞检测系统

devtools/2025/1/17 11:09:35/

基于深度学习YOLOv11神经网络路面坑洞检测系统,其能识别路面坑洞,见如下

第一步:YOLOv11介绍

YOLOv11是由Ultralytics公司开发的新一代目标检测算法,它在之前YOLO版本的基础上进行了显著的架构和训练方法改进。以下是YOLOv11的一些详细介绍和创新点:

增强的特征提取YOLOv11采用了改进的骨干网络和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务的性能。

优化效率和速度:引入了精细的架构设计和优化的训练流程,提供了更快的处理速度,并在准确性和性能之间保持了最佳平衡。

更少参数下的高准确度YOLOv11在COCO数据集上实现了更高的平均精度均值(mAP),同时比YOLOv8少用了22%的参数,使其在不牺牲准确性的情况下具有计算效率。

跨环境的适应性YOLOv11可以无缝部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统,确保了最大的灵活性。

支持广泛的任务YOLOv11不仅支持目标检测,还支持实例分割、图像分类、姿态估计和定向目标检测(OBB),满足一系列计算机视觉挑战。

YOLOv11的网络结构和关键创新点包括:

C3k2机制:这是一种新的卷积机制,它在网络的浅层将c3k参数设置为False,类似于YOLOv8中的C2f结构。
C2PSA机制:这是一种在C2机制内部嵌入的多头注意力机制,类似于在C2中嵌入了一个PSA(金字塔空间注意力)机制。
深度可分离卷积(DWConv):在分类检测头中增加了两个DWConv,这种卷积操作减少了计算量和参数量,提高了模型的效率。
自适应锚框机制:自动优化不同数据集上的锚框配置,提高了检测精度。
EIoU损失函数:引入了新的EIoU(Extended IoU)损失函数,考虑了预测框与真实框的重叠面积,长宽比和中心点偏移,提高了预测精度。
YOLOv11的训练过程包括数据准备、数据增强、超参数优化和模型训练几个阶段。它使用混合精度训练技术,在不降低模型精度的情况下,加快了训练速度,并减少了显存的占用。

在部署方面,YOLOv11支持导出为不同的格式,如ONNX、TensorRT和CoreML,以适应不同的部署平台。它还采用了多种加速技术,如半精度浮点数推理(FP16)、批量推理和硬件加速,以提升推理速度。

YOLOv11的成功标志着目标检测技术又迈出了重要的一步,它为开发者提供了更强大的工具来应对日益复杂的视觉检测任务。

第二步:YOLOv11网络结构

第三步:代码展示

# Ultralytics YOLO 🚀, AGPL-3.0 licensefrom pathlib import Pathfrom ultralytics.engine.model import Model
from ultralytics.models import yolo
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, OBBModel, PoseModel, SegmentationModel, WorldModel
from ultralytics.utils import ROOT, yaml_loadclass YOLO(Model):"""YOLO (You Only Look Once) object detection model."""def __init__(self, model="yolo11n.pt", task=None, verbose=False):"""Initialize YOLO model, switching to YOLOWorld if model filename contains '-world'."""path = Path(model)if "-world" in path.stem and path.suffix in {".pt", ".yaml", ".yml"}:  # if YOLOWorld PyTorch modelnew_instance = YOLOWorld(path, verbose=verbose)self.__class__ = type(new_instance)self.__dict__ = new_instance.__dict__else:# Continue with default YOLO initializationsuper().__init__(model=model, task=task, verbose=verbose)@propertydef task_map(self):"""Map head to model, trainer, validator, and predictor classes."""return {"classify": {"model": ClassificationModel,"trainer": yolo.classify.ClassificationTrainer,"validator": yolo.classify.ClassificationValidator,"predictor": yolo.classify.ClassificationPredictor,},"detect": {"model": DetectionModel,"trainer": yolo.detect.DetectionTrainer,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,},"segment": {"model": SegmentationModel,"trainer": yolo.segment.SegmentationTrainer,"validator": yolo.segment.SegmentationValidator,"predictor": yolo.segment.SegmentationPredictor,},"pose": {"model": PoseModel,"trainer": yolo.pose.PoseTrainer,"validator": yolo.pose.PoseValidator,"predictor": yolo.pose.PosePredictor,},"obb": {"model": OBBModel,"trainer": yolo.obb.OBBTrainer,"validator": yolo.obb.OBBValidator,"predictor": yolo.obb.OBBPredictor,},}class YOLOWorld(Model):"""YOLO-World object detection model."""def __init__(self, model="yolov8s-world.pt", verbose=False) -> None:"""Initialize YOLOv8-World model with a pre-trained model file.Loads a YOLOv8-World model for object detection. If no custom class names are provided, it assigns defaultCOCO class names.Args:model (str | Path): Path to the pre-trained model file. Supports *.pt and *.yaml formats.verbose (bool): If True, prints additional information during initialization."""super().__init__(model=model, task="detect", verbose=verbose)# Assign default COCO class names when there are no custom namesif not hasattr(self.model, "names"):self.model.names = yaml_load(ROOT / "cfg/datasets/coco8.yaml").get("names")@propertydef task_map(self):"""Map head to model, validator, and predictor classes."""return {"detect": {"model": WorldModel,"validator": yolo.detect.DetectionValidator,"predictor": yolo.detect.DetectionPredictor,"trainer": yolo.world.WorldTrainer,}}def set_classes(self, classes):"""Set classes.Args:classes (List(str)): A list of categories i.e. ["person"]."""self.model.set_classes(classes)# Remove background if it's givenbackground = " "if background in classes:classes.remove(background)self.model.names = classes# Reset method class names# self.predictor = None  # reset predictor otherwise old names remainif self.predictor:self.predictor.model.names = classes

第四步:统计训练过程的一些指标,相关指标都有

第五步:运行(支持图片、文件夹、摄像头和视频功能)

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

PyTorch框架——基于深度学习YOLOv11神经网络路面坑洞检测系统_哔哩哔哩_bilibili


http://www.ppmy.cn/devtools/151257.html

相关文章

带头双向循环链表(数据结构初阶)

文章目录 双向链表链表的分类概念与结构实现双向链表定义链表结构链表打印判空申请结点初始化头插尾插头删尾删查找指定位置插入和删除销毁链表 顺序表和链表的分析结语 欢迎大家来到我的博客,给生活来点impetus!! 这一节我们学习双向链表&a…

root后如何隐藏环境?

很多小伙伴在给手机root之后以为就大功告成啦!其实你要做的才刚刚开始,很多安全性强的软件会侦查出你手机里的root,进而限制部分功能或直接拒绝你的访问。今天我来教大家一些常见的隐藏环境的方法以及步骤,希望对大家有帮助。 方…

做跨境电商服务器用什么宽带好?

做跨境电商服务器用什么宽带好?做跨境电商服务器,推荐选择光纤宽带或高性能的5G网络。光纤宽带高速稳定,适合处理大量数据和实时交互;5G网络则提供超高速移动连接,适合需要灵活性和移动性的卖家。具体选择需根据业务规…

Dual Split A2dp SBC Streams

背景 SBC是经典蓝牙A2DP强制支持的音频标准配置的codec,通常情况下,在我们的印象中SBC是蓝牙低质量音质的代名词,如果一个耳机或者音响只支持SBC一个codec,那么这个耳机或音响肯定是低端货,一般高端的人耳机都会支持一…

uniapp 小程序 textarea 层级穿透,聚焦光标位置错误怎么办?

前言 在开发微信小程序时,使用 textarea 组件可能会遇到一些棘手的问题。最近我在使用 uniapp 开发微信小程序时,就遇到了两个非常令人头疼的问题: 层级穿透:由于 textarea 是原生组件,任何元素都无法遮盖住它。当其…

【蓝桥杯】43687.赢球票

题目描述 某机构举办球票大奖赛。获奖选手有机会赢得若干张球票。 主持人拿出 N 张卡片(上面写着 1⋯N 的数字),打乱顺序,排成一个圆圈。 你可以从任意一张卡片开始顺时针数数: 1,2,3 ⋯ ⋯ 如果数到的数字刚好和卡片上的数字…

分类统计字符个数(PTA)C语言

本题要求实现一个函数,统计给定字符串中英文字母、空格或回车、数字字符和其他字符的个数。 函数接口定义: void StringCount( char s[] ); 其中 char s[] 是用户传入的字符串。函数StringCount须在一行内按照 letter 英文字母个数, blank 空格或回…

docker 与K8s的恩怨情仇

Docker 和 Kubernetes(通常简称为 K8s)是容器化和容器编排领域的两大重要工具,它们在技术生态中扮演着不同的角色,并且有着密切的关系。虽然有时候人们会讨论它们之间的关系,但实际上它们更多的是互补而不是对立。下面…