YOLOv8从菜鸟到精通(二):YOLOv8数据标注以及模型训练

devtools/2025/1/17 1:41:58/

数据标注

前期准备

先打开Anaconda Navigator,点击Environment,再点击new(new是我下载anaconda的文件夹名称),然后点击创建

点击绿色按钮,并点击Open Terminal

输入labelimg便可打开它,labelimg是图像标注工具,在上篇文章中有讲到如何下载

标注工具的使用

找个空目录新建一个文件夹,我这里名称叫做yolotest,也可以设置其他名称

在 yolotest 目录下新建labels和images文件夹

在images文件夹新建test,train,val三个文件夹

在labesl下面新建train,val两个文件夹

images文件夹下面的test,train,val三个文件夹,全部存放相同的要训练的图片,例如train下面是 1.png,2.png,将这个两个文件复制一份到val,再复制一份到test

labels下面的train,val两个文件夹存放的是用labelimg标注的标签数据文件,等会 labelimg 使用会用到这个文件夹

将准备好的图片放到 images/train 文件夹下面并且复制一份到 images/val 和 images/test两个文件夹

数据集获取:https://storage.googleapis.com/openimages/web/visualizer/index.html?type=detection&set=train&c=%2Fm%2F05676x

来到labelimg界面,点击 Open Dir 按钮,选择到你的 images/train 文件夹即可,例如 D:\YOLOv8\yolotest\images\train。点击 Change Save Dir 按钮,选择到你的 labels/train 文件夹即可,例如 D:\YOLOv8\yolotest\labels\train。最后点击Save 下面的格式按钮,调整到 YOLO 格式的模式即可。

接下来开始标注数据

我选的例子是苹果,首先在图片上右键菜单,选择 Create RectBox 选项,或者点击左侧的 Create RectBox

苹果图片区域拉出选框,会弹出框,输入分类名称,这里填写的是apple,点击ok即可保存 ,这分类名称注意后面函数调用要用到。

此时在使用时可能会出现如下错误

解决方法

找到canvas.py,例如:D:\anaconda\envs\yolotest\Lib\site-packages\libs\canvas.py,打开它将526、530、531行的float改为int即可。

修改前后

修改完成后就可以正常工作啦!!!

我们继续接着上步,第一个图片标注完成后,点击左侧的 Save 按钮保存,然后点击 Next Image 切换标注下一张图片,操作和第一张图片类似

图标标注保存后,会在 labels/train 文件夹存储了标注的数据,classes.txt内容就是分类名称,其他的是和图片相同的名称的txt标注文件

最后,将 labels/train 文件夹数据复制到 labels/val 文件夹,等会验证模型的时候使用

至此,数据标注就完成啦!

模型训练

在 yolotest 文件下新建一个训练的配置文件,例如文件名称叫 apple.yaml,使用记事本打开,填写内容如下

path: D:/YOLOv8/yolotest
train: images/train
val: images/val
test: images/test
nc: 1
names: ["apple"]

# 有多个类别的话,按照以下方法写

# names: ["111","222"]

  • 参数解释

 path: 代表训练的根目录,这里的 yolotest在D盘,就写 D:/YOLOv8/yolotest,其他盘的路径自己修改

train: 代表要训练的图片文件夹,相对于path路径

val: 代表要验证的图片文件夹,相对于path路径

test: 代表要测试的图片文件夹,相对于path路径

nc: 代表分类名称数量,这是1个,因为使用labelimg标注的是1个类别,如果是多个数据就跟和实际类别数量一样的即可

names: 是一个json数组,代表的是标注的分类名称,labelimg使用的是apple这一个分类名称,这里就这样写即可

切记如果有多个分类名称的话名称的顺序不要写错,会影响训练结果

开始训练

在控制台输入命令,在cmd窗口,输入d:回车,在输入 cd YOLOv8/yolotest,进入这个文件夹 yolotest,其他路径自行进入

输入以下训练命令,下面两个任选一个,截图参数看ultralytics官网

yolo detect train data=d:/YOLOv8/yolotest/apple.yaml model=d:/YOLOv8/yolotest/yolov8s.pt imgsz=640

yolo detect train data=d:/YOLOv8/yolotest/apple.yaml model=d:/YOLOv8/yolotest/yolov8s.pt epochs=100 imgsz=640

这个时候系统会下载yolov8s.pt的基础训练文件

环境配置成功,一切无误,开始训练

训练完毕,注意这里的 Results saved后面的路径是动态的,截图中是在 runs/detect/train文件夹下,就是D:/YOLOv8/yolotest文件夹下

最后,在训练完成的目录中可以找到 best.pt 的训练模型以及训练中被标记和选中目标的图片结果集


http://www.ppmy.cn/devtools/151133.html

相关文章

AI 编程工具—Cursor进阶使用 阅读开源项目

AI 编程工具—Cursor进阶使用 阅读开源项目 首先我们打开一个最近很火的项目browser-use ,直接从github 上克隆即可 索引整个代码库 这里我们使用@Codebase 这个选项会索引这个代码库,然后我们再选上这个项目的README.md 文件开始提问 @Codebase @README.md 这个项目是用…

快速上手 HarmonyOS 应用开发

一、DevEco Studio 安装与配置 1. DevEco Studio 简介 DevEco Studio 是 HarmonyOS 的一站式集成开发环境(IDE),提供了丰富的工具和功能,支持 HarmonyOS 应用开发的全流程。 2. DevEco Studio 下载与安装 下载地址&#xff1a…

【Web安全】SQL 注入攻击技巧详解:UNION 注入(UNION SQL Injection)

【Web安全】SQL 注入攻击技巧详解:UNION 注入(UNION SQL Injection) 引言 UNION注入是一种利用SQL的UNION操作符进行注入攻击的技术。攻击者通过合并两个或多个SELECT语句的结果集,可以获取数据库中未授权的数据。这种注入技术要…

【Uniapp-Vue3】组合式API中的组件的生命周期函数(钩子函数)

在Uniapp中生命周期函数用得较多的是onMounted和onUnmounted。 一、onMounted函数 如果我们想要获得DOM元素,就需要给DOM标签上添加ref属性,并定义一个相同属性名的变量。 但是我们输出这个DOM元素为NULL 如果我们使用onMounted就能获得到DOM元素&…

OpenCV基于均值漂移算法(pyrMeanShiftFiltering)的水彩画特效

1、均值漂移算法原理 pyrMeanShiftFiltering算法结合了均值迁移(Mean Shift)算法和图像金字塔(Image Pyramid)的概念,用于图像分割和平滑处理。以下是该算法的详细原理: 1.1 、均值迁移(Mean …

Java并发编程——线程池(基础,使用,拒绝策略,命名,提交方式,状态)

文章目录 线程池🏊线程池的好处👍线程池的创建🏗️线程池(ThreadPoolExecutor)常见参数🔢处理任务流程🔃拒绝策略⭐使用数据库任务表来自定义拒绝策略 线程池中两种提交方式线程池命名♂️♀️线程池状态 线程池&#…

状态模式详解与应用

状态模式(State Pattern),是一种行为型设计模式。它允许一个对象在其内部状态改变时改变它的行为,使得对象看起来似乎修改了它的类。通过将不同的行为封装在不同的状态类中,状态模式可以避免大量的条件判断语句&#x…

cursor重构谷粒商城01——为何要重构谷粒商城

前言:这个系列将使用最前沿的cursor作为辅助编程工具,来快速开发一些基础的编程项目。目的是为了在真实项目中,帮助初级程序员快速进阶,以最快的速度,效率,快速进阶到中高阶程序员。 本项目将基于谷粒商城…