基于华为atlas的重车(满载)空车(空载)识别

devtools/2025/1/16 7:49:41/

该教程主要是想摸索出华为atlas的基于ACL的推理模式。最终实现通过煤矿磅道上方的摄像头,识别出车辆的重车(满载)、空车(空载)情况。本质上是一个简单的检测问题。

但是整体探索过程比较坎坷,Tianxiaomo的代码可以基于原始yolov4模型进行推理,可以转化onnx,但是训练过程我感觉代码有问题,loss很大,也没检测框输出。同时输出的结果的维度和atlas教程的维度也不一样。对于这2个问题,第1个问题训练效果不对选择使用原始darknet网络解决,第2个问题输出维度和atlas不一样通过重新实现atlas后处理代码实现。

风雨兼程,终见彩虹;艰辛耕耘,方得硕果。

darknet数据集制作及配置文件修改:

(1)数据集采用labelimg工具标注为VOC格式,一共标注了1087张图片。

(2)数据集格式如下,

其中,VOC2025为我自己的数据集起的名字,你也可以起别的名字,Annotations存放XML文件,Main中存放,train.txt,val.txt,txt中只写图片的名字,一行一个。JPEGImages中存放图片。labels中存放由XML生成的txt文件。

(3)修改scripts下面的voc_label.py,将数据集的目录修改为自己的目录,

#开始几行
sets=[('2025', 'train'), ('2025', 'val')]
classes = ["full", "empty"]
#最后2行
os.system("cat 2025_train.txt 2025_val.txt > train.txt")
os.system("cat 2025_train.txt 2025_val.txt > train.all.txt")

然后执行

Python3 scripts/voc_label.py

就会生成labels文件夹,以及文件夹下面的txt标记,以及train.txt 和train.all.txt

其中,train.txt中存储路径+图片名,一行一个

/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01467.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01468.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01469.jpg
/data/jxl/darknet/VOCdevkit/VOC2025/JPEGImages/3743_01559.jpg

Labels文件夹下每个图片对应一个txt文件,里面存储类别 框坐标的归一化值

0 0.6794407894736842 0.5394736842105263 0.5516447368421052 0.9195906432748537

(4)修改,cfg/fullempty.data

classes= 2
train  = ./VOCdevkit/VOC2025/ImageSets/Main/train.txt
valid  = ./VOCdevkit/VOC2025/ImageSets/Main/val.txt
names = ./data/fullempty.names
backup = ./pjreddie/backup/

class为训练的类别数

train为训练集train.txt

valid为验证集val.txt

names为fullempty.names,里面为自己训练的目标名称

backup为weights的存储位置

(5)修改cfg/yolov4-fullempty.cfg

修改每个classes=2

修改最后一个卷基层,filters和最后一个region的classes,num参数是因为yolov4有3个分支,每个分支3个anchor。

其中,filters=num×(classes + coords + 1)=3*(2+4+1)=21,这里我有2个类别。

(6)修改data/fullempty.names

full
empty

darknet模型训练:

./darknet detector train ./cfg/fullempty.data ./cfg/yolov4-fullempty.cfg  ./yolov4.weights -clear

darknet的.weights模型测试:

./darknet detect  ./cfg/yolov4-fullempty.cfg  ./pjreddie/backup/yolov4-fullempty_last.weights  ./VOCdevkit/VOC2025/JPEGImages/2793_00847.jpg

Pytorch代码配置文件修改:

#cfg.py,

Cfg.use_darknet_cfg = True
Cfg.cfgfile = os.path.join(_BASE_DIR, 'cfg', 'yolov4-custom.cfg')

#cfg/yolov4-custom.cfg,

Pytorch代码bug修改:

#train.py211行,

pred_ious = bboxes_iou(pred[b].view(-1, 4), truth_box, xyxy=False)修改为,
pred_ious = bboxes_iou(pred[b].contiguous().view(-1, 4), truth_box, xyxy=False)

# dataset.py, get_image_id函数,因为我的图片命名规则是Id_id.jpg,所以将2个id拼接起来作为最终的id。

parts = filename.split('.')[0].split('_')
id = int(parts[0]+ parts[1])
return id

基于pytorch代码的.weights模型测试:

python3 demo.py -cfgfile ./cfg/yolov4-custom.cfg -weightfile ./yolov4-fullempty_last.weights -imgfile ./full_empty_dataset/images/2793_00847.jpg -torch False

.weights模型转onnx模型:

python3 demo_darknet2onnx.py ./cfg/yolov4-custom.cfg ./data/full_empty.names ./yolov4-fullempty_last.weights ./full_empty_dataset/images/2793_00847.jpg 1

onnx模型转om模型:

atc --model=./yolov4_1_3_608_608_static.onnx --framework=5 --output=yolov4_bs1 --input_shape="input:1,3,608, 608"  --soc_version=Ascend310P3 --input_format=NCHW

atlas推理代码编写:

#yolov4.py

import sys
sys.path.append("./common/acllite")
import os
import numpy as np
import acl
import cv2
import time
from acllite_model import AclLiteModel
from acllite_resource import AclLiteResourcefrom utils import post_processing, plot_boxes_cv2MODEL_PATH = "./model/yolov4_bs1.om"#ACL resource initialization
acl_resource = AclLiteResource()
acl_resource.init()
#load model
model = AclLiteModel(MODEL_PATH)class YOLOV4(object):def __init__(self):self.MODEL_PATH = MODEL_PATHself.MODEL_WIDTH = 608self.MODEL_HEIGHT = 608self.class_names= ['full', 'empty']self.model = modeldef preprocess(self, bgr_img):sized = cv2.resize(bgr_img.copy(), (self.MODEL_WIDTH, self.MODEL_HEIGHT))sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)new_image = sized.astype(np.float32)new_image = new_image / 255.0new_image = new_image.transpose(2, 0, 1).copy()return new_imagedef process(self, bgr_img):height, width = bgr_img.shape[:2]#preprocessdata = self.preprocess(bgr_img)#(3, 608, 608)#Send into model inferenceresult_list = self.model.execute([data,])    #Process inference resultsconf_thresh, nms_thresh = 0.4, 0.6boxes = post_processing(conf_thresh, nms_thresh, result_list, height, width)return boxesdef draw(self, bgr_img, boxes):drawed_img = plot_boxes_cv2(bgr_img, boxes[0], class_names=self.class_names)return drawed_imgdef test_image():yolov4 = YOLOV4()img_name = "./data/3553_00173.jpg"#read imagebgr_img = cv2.imread(img_name)t1 = time.time()boxes = yolov4.process(bgr_img)t2 = time.time()drawed_img = yolov4.draw(bgr_img, boxes)t3 = time.time()print("result = ", len(boxes[0]), boxes, t2-t1, t3-t2)cv2.imwrite("out.jpg", drawed_img)if __name__ == '__main__':test_image()

#utils.py

import sys
import os
import time
import math
import numpy as npimport itertools
import struct  # get_image_size
import imghdr  # get_image_sizedef sigmoid(x):return 1.0 / (np.exp(-x) + 1.)def softmax(x):x = np.exp(x - np.expand_dims(np.max(x, axis=1), axis=1))x = x / np.expand_dims(x.sum(axis=1), axis=1)return xdef bbox_iou(box1, box2, x1y1x2y2=True):if x1y1x2y2:mx = min(box1[0], box2[0])Mx = max(box1[2], box2[2])my = min(box1[1], box2[1])My = max(box1[3], box2[3])w1 = box1[2] - box1[0]h1 = box1[3] - box1[1]w2 = box2[2] - box2[0]h2 = box2[3] - box2[1]else:w1 = box1[2]h1 = box1[3]w2 = box2[2]h2 = box2[3]mx = min(box1[0], box2[0])Mx = max(box1[0] + w1, box2[0] + w2)my = min(box1[1], box2[1])My = max(box1[1] + h1, box2[1] + h2)uw = Mx - mxuh = My - mycw = w1 + w2 - uwch = h1 + h2 - uhcarea = 0if cw <= 0 or ch <= 0:return 0.0area1 = w1 * h1area2 = w2 * h2carea = cw * chuarea = area1 + area2 - careareturn carea / uareadef nms_cpu(boxes, confs, nms_thresh=0.5, min_mode=False):x1 = boxes[:, 0]y1 = boxes[:, 1]x2 = boxes[:, 2]y2 = boxes[:, 3]areas = (x2 - x1) * (y2 - y1)order = confs.argsort()[::-1]keep = []while order.size > 0:idx_self = order[0]idx_other = order[1:]keep.append(idx_self)xx1 = np.maximum(x1[idx_self], x1[idx_other])yy1 = np.maximum(y1[idx_self], y1[idx_other])xx2 = np.minimum(x2[idx_self], x2[idx_other])yy2 = np.minimum(y2[idx_self], y2[idx_other])w = np.maximum(0.0, xx2 - xx1)h = np.maximum(0.0, yy2 - yy1)inter = w * hif min_mode:over = inter / np.minimum(areas[order[0]], areas[order[1:]])else:over = inter / (areas[order[0]] + areas[order[1:]] - inter)inds = np.where(over <= nms_thresh)[0]order = order[inds + 1]return np.array(keep)def plot_boxes_cv2(img, boxes, class_names=None, color=None):import cv2img = np.copy(img)colors = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)def get_color(c, x, max_val):ratio = float(x) / max_val * 5i = int(math.floor(ratio))j = int(math.ceil(ratio))ratio = ratio - ir = (1 - ratio) * colors[i][c] + ratio * colors[j][c]return int(r * 255)width = img.shape[1]height = img.shape[0]for i in range(len(boxes)):box = boxes[i]x1 = int(box[0])y1 = int(box[1])x2 = int(box[2])y2 = int(box[3])bbox_thick = int(0.6 * (height + width) / 600)if color:rgb = colorelse:rgb = (255, 0, 0)if len(box) >= 7 and class_names:cls_conf = box[5]cls_id = box[6]print('%s: %f' % (class_names[cls_id], cls_conf))classes = len(class_names)offset = cls_id * 123457 % classesred = get_color(2, offset, classes)green = get_color(1, offset, classes)blue = get_color(0, offset, classes)if color is None:rgb = (red, green, blue)msg = str(class_names[cls_id])+" "+str(round(cls_conf,3))t_size = cv2.getTextSize(msg, 0, 0.7, thickness=bbox_thick // 2)[0]c1, c2 = (x1,y1), (x2, y2)c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)cv2.rectangle(img, (x1,y1), (np.int32(c3[0]), np.int32(c3[1])), rgb, -1)img = cv2.putText(img, msg, (c1[0], np.int32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0,0,0), bbox_thick//2,lineType=cv2.LINE_AA)#cv2.rectangle(img, (x1,y1), (np.float32(c3[0]), np.float32(c3[1])), rgb, -1)#img = cv2.putText(img, msg, (c1[0], np.float32(c1[1] - 2)), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0,0,0), bbox_thick//2,lineType=cv2.LINE_AA)img = cv2.rectangle(img, (x1, y1), (x2, y2), rgb, bbox_thick)return imgdef read_truths(lab_path):if not os.path.exists(lab_path):return np.array([])if os.path.getsize(lab_path):truths = np.loadtxt(lab_path)truths = truths.reshape(truths.size / 5, 5)  # to avoid single truth problemreturn truthselse:return np.array([])def load_class_names(namesfile):class_names = []with open(namesfile, 'r') as fp:lines = fp.readlines()for line in lines:line = line.rstrip()class_names.append(line)return class_namesdef post_processing(conf_thresh, nms_thresh, output, height, width):# anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401]# num_anchors = 9# anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]# strides = [8, 16, 32]# anchor_step = len(anchors) // num_anchors# [batch, num, 1, 4]box_array = output[0]# [batch, num, num_classes]confs = output[1]t1 = time.time()if type(box_array).__name__ != 'ndarray':box_array = box_array.cpu().detach().numpy()confs = confs.cpu().detach().numpy()num_classes = confs.shape[2]# [batch, num, 4]box_array = box_array[:, :, 0]# [batch, num, num_classes] --> [batch, num]max_conf = np.max(confs, axis=2)max_id = np.argmax(confs, axis=2)t2 = time.time()bboxes_batch = []for i in range(box_array.shape[0]):argwhere = max_conf[i] > conf_threshl_box_array = box_array[i, argwhere, :]l_max_conf = max_conf[i, argwhere]l_max_id = max_id[i, argwhere]bboxes = []# nms for each classfor j in range(num_classes):cls_argwhere = l_max_id == jll_box_array = l_box_array[cls_argwhere, :]ll_max_conf = l_max_conf[cls_argwhere]ll_max_id = l_max_id[cls_argwhere]keep = nms_cpu(ll_box_array, ll_max_conf, nms_thresh)if (keep.size > 0):ll_box_array = ll_box_array[keep, :]ll_max_conf = ll_max_conf[keep]ll_max_id = ll_max_id[keep]for k in range(ll_box_array.shape[0]):bboxes.append([ll_box_array[k, 0]*width, ll_box_array[k, 1]*height, ll_box_array[k, 2]*width, ll_box_array[k, 3]*height, ll_max_conf[k], ll_max_conf[k], ll_max_id[k]])bboxes_batch.append(bboxes)t3 = time.time()return bboxes_batch

atlas推理代码测试:

python3 yolov4.py

视频测试:

参考链接:

https://github.com/AlexeyAB/darknet

https://github.com/Tianxiaomo/pytorch-YOLOv4

samples: CANN Samples - Gitee.com


http://www.ppmy.cn/devtools/150878.html

相关文章

集合帖:区间问题

一、AcWing 803&#xff1a;区间合并 &#xff08;1&#xff09;题目来源&#xff1a;https://www.acwing.com/problem/content/805/ &#xff08;2&#xff09;算法代码&#xff1a;https://blog.csdn.net/hnjzsyjyj/article/details/145067059 #include <bits/stdc.h>…

基于YOLOv8的高空无人机小目标检测系统(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型

目标检测系统【环境搭建过程】&#xff08;GPU版本&#xff09;-CSDN博客 摘要 本文提出了一种基于YOLOv8算法的高空无人机小目标检测系统&#xff0c;利用VisDrone数据集中的7765张图片&#xff08;6903张训练集&#xff0c;862张验证集&#xff09;进行模型训练&#xff0c;…

简识MySQL的InnoDB Locking锁的分类

&#xff08; 参考官方网页&#xff1a; MySQL :: MySQL 5.7 Reference Manual :: 14.7.1 InnoDB Locking&#xff09; 一、InnoDB Locking锁的分类&#xff1a; 锁的分类英文缩写共享锁Shared LocksS排他锁Exclusive LocksX意向共享锁Intention Shared LocksIS意向排他锁Int…

《鸿蒙Next旅游应用:人工智能赋能个性化与智能导览新体验》

随着鸿蒙Next的推出&#xff0c;旅游应用迎来了全新的发展机遇&#xff0c;借助人工智能技术能为用户带来更出色的个性化推荐和智能导览服务。 鸿蒙Next与人工智能融合优势 鸿蒙Next拥有强大的分布式能力和原生智能体验。其能打破设备界限&#xff0c;实现多设备协同&#xf…

uni-app:动态禁止下拉列表展示情况(如果下拉列表数据为空就拦截下拉框展示,显示提示信息)

效果 如下图&#xff0c;需要当批号的下拉栏位存在数据的时候&#xff0c;才会展示下拉框&#xff0c;现在即使数据为空也会展示下拉框 修改后的效果&#xff0c;只出现提示&#xff0c;不展示下拉框 代码 1、页面展示 设置picker下拉框的外层点击事件&#xff0c;点击事件出…

(STM32笔记)十二、DMA的基础知识与用法 第二部分

我用的是正点的STM32F103来进行学习&#xff0c;板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话&#xff0c;用的也是这个板子和教程。 DMA的基础知识与用法 二、DMA传输设置1、数据来源与数据去向外设到存储器存储器到外设存储器到存储器 2、每次传输大小3、传…

ubuntu20.04中vscode配置django

1.下载插件 我用的是这两个 2.配置环境 Ubuntu20.04创建虚拟环境 python3 -m venv .venv 没有 venv 的记得装一下 sudo apt install python3.8-venv 装好之后&#xff0c;会出现 .venv 的文件夹 找一下 activate &#xff0c;我的在 bin 里 按照提示 source bin/activate…

嵌入式无人机: 防止信号被有意干扰入侵策略

在嵌入式无人机项目中&#xff0c;防止信号被有意干扰或入侵是一个重要的安全问题。有效的防护措施可以从硬件、软件和通信协议等多个方面入手&#xff0c;确保系统的稳定性和安全性。以下是详细的防护策略&#xff1a; 1. 物理层保护 频率跳变&#xff08;Frequency Hopping…