将光源视角的深度贴图应用于摄像机视角的渲染

devtools/2025/1/12 5:52:58/

将光源视角的深度贴图应用于摄像机视角的渲染是阴影映射(Shadow Mapping)技术的核心步骤之一。这个过程涉及到将摄像机视角下的片段坐标转换到光源视角下,并使用深度贴图来判断这些片段是否处于阴影中。

1. 生成光源视角的深度贴图
首先,我们需要从光源的视角渲染场景,生成一个深度贴图。这个深度贴图记录了从光源到场景中每个可见点的距离(即深度值)。具体步骤如下:

设置光源视角:我们将摄像机位置设置为光源的位置,并将摄像机的方向指向场景。这样,我们可以从光源的视角渲染场景。
创建帧缓冲对象(FBO):为了存储深度信息,我们需要创建一个帧缓冲对象(Framebuffer Object, FBO),并将一个深度纹理附加到该 FBO 上。
渲染深度贴图:在这个视角下,我们只渲染场景的深度信息,而不是颜色信息。每个像素的深度值表示从光源到该像素对应场景点的距离。这些深度值被存储在一个纹理中,这就是所谓的“深度贴图”或“阴影贴图”。

GLuint depthMapFBO;
glGenFramebuffers(1, &depthMapFBO);
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;  // 深度贴图的分辨率
GLuint depthMap;
glGenTextures(1, &depthMap);
glBindTexture(GL_TEXTURE_2D, depthMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthMap, 0);
glDrawBuffer(GL_NONE);  // 禁用颜色输出
glReadBuffer(GL_NONE);  // 禁用颜色读取
glBindFramebuffer(GL_FRAMEBUFFER, 0);


2. 计算光源的视图和投影矩阵
为了将摄像机视角下的片段转换到光源视角下,我们需要计算光源的视图矩阵和投影矩阵。这些矩阵用于将世界坐标转换为光源视角下的裁剪空间坐标。

视图矩阵:使用 glm::lookAt 函数来计算光源的视图矩阵。这个函数需要三个参数:光源的位置、目标点(通常是场景的中心)和上方向向量(通常是 (0, 1, 0))。
投影矩阵:根据光源的类型选择合适的投影矩阵。对于平行光(如定向光),通常使用正交投影矩阵(glm::ortho);对于点光源或聚光灯,通常使用透视投影矩阵(glm::perspective)。

glm::mat4 lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0, 1.0, 0.0));
glm::mat4 lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane, far_plane);
glm::mat4 lightSpaceMatrix = lightProjection * lightView;


3. 将摄像机视角下的片段转换到光源视角下
在摄像机视角下渲染场景时,我们需要将每个片段的坐标从摄像机视角转换到光源视角。具体步骤如下:

将片段从屏幕空间转换到世界空间:使用摄像机的逆投影矩阵和逆视图矩阵将片段从屏幕空间转换到世界空间。
将片段从世界空间转换到光源视角下的裁剪空间:使用光源的视图矩阵和投影矩阵将世界空间中的坐标转换到光源视角下的裁剪空间。
将片段从裁剪空间转换到归一化设备坐标(NDC):通过透视除法(即将 x, y, z 分量除以 w 分量)将裁剪空间中的坐标转换为 NDC。
将 NDC 转换到纹理坐标系:将 NDC 中的坐标从 [-1, 1] 映射到 [0, 1],以便可以在深度贴图中进行采样。
 

// 在片元着色器中
void main() {// 将片段位置从世界空间转换到光源视角下的裁剪空间vec4 fragPosLightSpace = lightSpaceMatrix * vec4(WorldPos, 1.0);// 执行透视除法,将裁剪空间坐标转换为 NDCvec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;// 将 NDC 坐标从 [-1, 1] 映射到 [0, 1]projCoords = projCoords * 0.5 + 0.5;// 从深度贴图中采样深度值float closestDepth = texture(shadowMap, projCoords.xy).r;float currentDepth = projCoords.z;// 计算阴影因子float shadow = currentDepth > closestDepth ? 1.0 : 0.0;// 应用阴影因子到最终颜色FragColor = mix(color, shadowColor, shadow);
}

处理自阴影问题
当物体自身遮挡自己时,可能会出现自阴影问题。为了避免这种情况,可以在计算阴影时引入一个小偏移量(Bias),以防止物体表面的深度值与深度贴图中的深度值过于接近。偏移量的大小可以根据物体表面的法线方向和光源方向之间的夹角进行调整。

float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;


http://www.ppmy.cn/devtools/149799.html

相关文章

如何规模化实现完全自动驾驶?Mobileye提出解题“新”思路

在CES 2025上,Mobileye展示了端到端自动驾驶系统Mobileye Drive™,通过高度集成的传感器、算法和计算平台,可以实现自动驾驶功能的全覆盖。 Mobileye创始人兼首席执行官Amnon Shashua教授 期间,Mobileye创始人兼首席执行官Amnon …

【Spring】对象中参数添加校验注解,但校验不生效

问题复现 在构建 Web 服务时,我们一般都会对一个 HTTP 请求的 Body 内容进行校验,例如我们来看这样一个案例及对应代码。当开发一个学籍管理系统时,我们会提供了一个 API 接口去添加学生的相关信息,其对象定义参考下面的代码&…

Opencv图片的旋转和图片的模板匹配

图片的旋转和图片的模板匹配 目录 图片的旋转和图片的模板匹配1 图片的旋转1.1 numpy旋转1.1.1 函数1.1.2 测试 1.2 opencv旋转1.2.1 函数1.2.2 测试 2 图片的模板匹配2.1 函数2.2 实际测试 1 图片的旋转 1.1 numpy旋转 1.1.1 函数 np.rot90(kl,k1),k1逆时针旋转9…

seleniun 自动化程序,python编程 我监控 chrome debug数据后 ,怎么获取控制台的信息呢

python 好的,使用 Python 来监控 Chrome 的调试数据并获取控制台信息,可以使用 websocket-client 库来连接 Chrome 的 WebSocket 接口。以下是一个详细的示例: 1. 安装必要的库 首先,你需要安装 websocket-client 库。可以使用…

前端组件开发:组件开发 / 定义配置 / 配置驱动开发 / 爬虫配置 / 组件V2.0 / form表单 / table表单

一、最早的灵感 最早的灵感来自sprider / 网络爬虫 / 爬虫配置,在爬虫爬取网站文章时候,会输入给爬虫一个配置文件,里边的内容是一个json对象。里边包含了所有想要抓取的页面的信息。爬虫通过这个配置就可以抓取目标网站的数据。其实本文要引…

鸿蒙面试 2025-01-09

鸿蒙分布式理念?(个人认为理解就好) 鸿蒙操作系统的分布式理念主要体现在其独特的“流转”能力和相关的分布式操作上。在鸿蒙系统中,“流转”是指涉多端的分布式操作,它打破了设备之间的界限,实现了多设备…

git提交

基本流程:新建分支 → 分支上开发(写代码) → 提交 → 合并到主分支 拉取最新代码因为当前在 master 分支下,你必须拉取最新代码,保证当前代码与线上同步(最新),执行以下命令:bashgit pull orig…

通信与网络安全之网络连接

一.传输介质类型 1.基本概念 计算机总是以二进制的数字(0或1)形式工作 1)数字和模拟 模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传…