基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真

devtools/2025/1/8 5:41:37/

目录

1.算法仿真效果

2.算法涉及理论知识概要

2.1 Q-learning理论

2.2 机器人迷宫路线搜索具体实现

状态与动作定义

Q 表初始化

3.MATLAB核心程序

4.完整算法代码文件获得


1.算法仿真效果

matlab2022a仿真结果如下(完整代码运行后无水印)

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要

2.1 Q-learning理论

       强化学习旨在解决智能体(在本文中为机器人)如何在环境中采取一系列行动,以最大化累积奖励的问题。其核心要素包括:

智能体(Agent):执行动作的主体,如迷宫中的机器人,它能够感知环境状态并做出决策。

环境(Environment):智能体所处的外部世界,对于机器人迷宫问题,环境就是迷宫本身,包括墙壁、通道、起点和终点等布局,环境状态会因智能体的动作而发生改变。

状态(State):智能体对环境的感知描述,在迷宫场景下,机器人所在的位置坐标、周围是否有墙壁阻挡等信息构成了当前状态。例如,将迷宫划分为一个个网格单元,机器人位于某个网格单元时,该单元的标识以及相邻单元的可通行情况就是状态的一部分。

动作(Action):智能体能够采取的行为,在迷宫中机器人通常可以执行向上、向下、向左、向右移动等基本动作,不同动作会使机器人从当前状态转移到下一个可能的状态。

奖励(Reward):环境反馈给智能体的信号,用于评价智能体所采取动作的好坏。在迷宫搜索任务中,如果机器人朝着终点前进,可能会获得正向奖励;若撞到墙壁,则会得到负向奖励,如撞到墙壁给予 -1 奖励,每向终点靠近一步给予 +1 奖励,到达终点给予 +10 奖励等。

       Q-learning 的关键在于构建一个 Q 表(Q-table),它存储了智能体在每个状态下采取每个动作的预期长期奖励值,用数学公式表示为:Q(s,a),其中s表示状态,a表示动作。

       智能体的目标是通过不断学习,使得 Q 表中的值能够准确反映不同状态 - 动作对的优劣,从而依据 Q 表做出最优决策。Q-learning 的学习过程基于著名的贝尔曼方程(Bellman Equation)的迭代更新。

2.2 机器人迷宫路线搜索具体实现

       首先,将迷宫抽象为一个二维网格世界,每个网格单元代表一个状态。例如,一个M*N的迷宫,有M*N个可能的状态。用 0 表示可通行的通道,1 表示墙壁等障碍物。同时,定义机器人的初始位置为起点状态 ,迷宫中的目标位置为终点状态Sgoal。

状态与动作定义

Q 表初始化

       经过多轮训练后,Q 表已经学习到了不同状态下较优的动作策略。在实际路线搜索时,将机器人置于起点状态,然后在每一个状态下,直接选择 Q 值最大的动作(即采用贪婪策略,不再有探索概率 ),机器人按照选择的动作依次移动,直至到达终点,所经过的路径即为搜索到的最优路线(在 Q 表学习足够好的情况下,近似最优)。

3.MATLAB核心程序

.............................................................
Rwd_all     = [];
Q2_all      = [];
for i=1:Episodes    i[total_reward,Q,Model,Info,Q2]= func_episode(Q,Model,Miters) ; Rwd_all= [Rwd_all,total_reward];Q2_all = [Q2_all,mean(Q2)];endfigure;
plot(Rwd_all,'b-o');
xlabel('训练次数');
ylabel('累计奖励值');figure;
plot(Q2_all,'b-o');
xlabel('训练次数');
ylabel('Q值');[x]=Info{1};
[Maps2]=Info{2};
[Mapsv2]=Info{3};
[Q]=Info{4};[N,M] = size(Maps2);figure;
[Rms,Cms] = find(Maps2);
plot(Rms-0.5,Cms-0.5,'s','MarkerEdgeColor', '#29292a' ,'MarkerFaceColor','#535353','MarkerSize',12);
hold on;
xlim(gca,[0 N]);
ylim(gca,[0 M]);
box(gca,'on');
axis equal
plot(XY0(1)+0.5,XY0(2)+0.5,'og','MarkerFaceColor','g','MarkerSize',8);
plot(x(1)+0.5,x(2)+0.5,'sr','MarkerFaceColor','r','MarkerSize',8);
hold off;figure;
[Rms,Cms] = find(Maps2);
plot(Rms-0.5,Cms-0.5,'s','MarkerEdgeColor', '#29292a' ,'MarkerFaceColor','#535353','MarkerSize',12);
hold on;
xlim(gca,[0 N]);
ylim(gca,[0 M]);
box(gca,'on');
axis equal
plot(XY0(1)+0.5,XY0(2)+0.5,'og','MarkerFaceColor','g','MarkerSize',8);
plot(x(1)+0.5,x(2)+0.5,'sr','MarkerFaceColor','r','MarkerSize',8);
[mx,my] = find(Mapsv2);
plot(mx-0.5,my-0.5,'o','MarkerEdgeColor', '#d35400' ,'MarkerFaceColor',' #f39c12 ','MarkerSize',8);
hold off;
0Z_013m

4.完整算法代码文件获得

V


http://www.ppmy.cn/devtools/148819.html

相关文章

MySQL入门学习笔记

第一章 数据库系统概述 数据库的4个基本概念 数据、数据库、数据库管理系统、数据库系统是与数据库技术密切相关的4个基本概念 数据 数据是数据库中存储的基本对象,描述事物的符号记录称为数据,数据的表现形式还不能完全表达其内容,需要…

Ruby语言的编程范式

Ruby语言的编程范式 引言 Ruby是一种动态、开源、面向对象的编程语言,最早由日本计算机科学家Matz(松本行弘)于1995年开发。Ruby以其简洁的语法和强大的功能而广受欢迎,特别是在Web开发领域。Ruby对开发者的友好性以及其设计哲学…

Java设计模式 —— 【行为型模式】策略模式(Strategy Pattern) 详解

文章目录 概述优缺点适用场景模式结构案例实现拓展优化(策略工厂) 概述 策略模式是一种行为模式,该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。它…

修改 页面 滚动条样式

/* 整个页面的滚动条 */ ::-webkit-scrollbar {width: 12px; /* 滚动条的宽度 */ }/* 滚动条轨道 */ ::-webkit-scrollbar-track {background: #f1f1f1; /* 轨道的背景颜色 */border-radius: 10px; /* 轨道的圆角 */ }/* 滚动条滑块 */ ::-webkit-scrollbar-thumb {background:…

Elasticsearch DSL版

文章目录 1.索引库操作创建索引库:删除索引库:查询索引库:修改索引库:总结 2.文档操作创建文档:查询文档:删除文档:全量修改文档:增量修改文档:总结 3.DSL查询语法&#…

halcon中图像处理及图像滤波

图像滤波简介 图像滤波的方法主要分为两大类:空间域方法和频域方法。 空间域方法是以对图像的像素直接进行处理为基础,包括均值滤波、中值滤波、高斯滤波等;频域方法则是以修改图像在傅里叶变换空间的值为基础的,包括高通滤波、低通滤波、同态滤波等。 1.空间域图像滤波 图…

【LeetCode: 112. 路径总和 + 二叉树 + 递归】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

flutter 开启了服务并隐藏后如何关闭

步骤 1: 获取进程 ID (PID) 首先,你需要确认占用端口 6688 的进程 ID (PID)。如果你还没有获取到 PID,可以通过以下命令来查找: netstat -ano | findstr :6688 这将列出所有与端口 6688 相关的连接信息,最后一列是对应的 PID。…