transformer用作分类任务

devtools/2024/12/29 2:43:14/

系列博客目录


文章目录

  • 系列博客目录
  • 1、在手写数字图像这个数据集上进行分类
    • 1. 数据准备
    • 2. 将图像转化为适合Transformer的输入
    • 3. 位置编码
    • 4. Transformer编码器
    • 5. 池化操作
    • 6. 分类
    • 7. 训练
    • 8. 评估
    • 总结流程:
    • 相关模型:


1、在手写数字图像这个数据集上进行分类

在手写数字图像数据集(例如MNIST数据集)上使用Transformer进行分类任务时,基本的流程和文本分类任务类似,但有一些不同之处,因为MNIST是一个图像分类任务。我们可以将MNIST图像的处理方法适应到Transformer模型中。下面是如何在MNIST数据集上使用Transformer进行手写数字分类的步骤:

1. 数据准备

MNIST数据集包含28×28像素的灰度图像,每个图像表示一个手写数字(0到9)。首先,我们需要将这些图像转换为适合Transformer模型输入的格式。

  • 标准化:通常,将图像的像素值(0到255)缩放到[0, 1]范围内,或者标准化到均值为0,方差为1的分布。
  • 展平图像:通常,Transformer要求输入为序列数据,但图像本身是二维数据(28×28),因此,我们可以将每个图像展平为一个784维的向量(28×28 = 784)。

2. 将图像转化为适合Transformer的输入

  • 将图像展平后,我们可以将其分割成多个小块(patches)。这些小块可以看作是图像的“tokens”,类似于文本中的单词或子词。在这一步,图像被切割成大小为16x16(或者其他大小)的patch,并将每个patch展平为一个向量。
  • 例如,MNIST的28x28图像可以被切分为16x16的patches。每个patch会被展平成一个向量,然后这些向量作为Transformer模型的输入。

3. 位置编码

和文本数据一样,图像也需要位置编码。尽管图像的空间信息可以通过卷积网络来处理,但在Transformer模型中,我们需要给每个patch添加位置编码,以便模型能够理解每个patch在图像中的位置。

  • 对每个patch加上位置编码,以便Transformer能够捕捉到不同patch之间的位置关系。

4. Transformer编码器

将展平后的patches以及位置编码输入到Transformer的编码器部分。Encoder会通过自注意力机制(Self-Attention)和前馈神经网络(Feed-Forward Networks)处理这些输入。每个patch的表示会被增强,捕捉到与其他patch的上下文信息。

5. 池化操作

Transformer的输出会是每个patch的表示(通常是一个向量)。为了将这些表示汇聚成一个图像的全局表示,通常会使用以下两种池化方法:

  • [CLS]标记池化:如果使用类似BERT的结构,可以在输入的开始位置加上一个[CLS]标记,并使用该标记的最终表示来作为整个图像的表示。
  • 全局平均池化:对所有patch的表示进行平均池化,将每个patch的向量表示汇聚成一个固定大小的全局向量。

6. 分类

将Transformer输出的图像表示(通常是池化后的向量)传递到一个全连接层(或者多层感知机)。该分类头会输出一个包含10个类(数字0-9)的概率分布。

  • 使用softmax函数将模型输出转化为每个类别的概率。

7. 训练

训练过程中,通常会使用交叉熵损失函数(Cross-Entropy Loss)来优化模型参数,使得模型能够更好地对数字进行分类。优化算法(如Adam)会通过反向传播调整模型参数,逐步提高分类精度。

8. 评估

在训练结束后,可以使用MNIST测试集对模型进行评估。计算准确率,观察模型在手写数字分类任务上的表现。


总结流程:

  1. 数据准备:加载并标准化MNIST数据集,将图像展平并切分为patches。
  2. 位置编码:为每个patch添加位置编码。
  3. Transformer编码器:输入展平后的patches并通过Transformer编码器处理。
  4. 池化:通过池化操作将每个patch的表示聚合成一个全局向量表示。
  5. 分类:通过全连接层进行数字分类,输出10个类别的概率分布。
  6. 训练和优化:使用交叉熵损失进行训练,优化模型参数。
  7. 评估:评估模型的分类准确率。

相关模型:

  • Vision Transformer (ViT):这是一个专门为图像分类设计的Transformer模型,它使用类似于上述方法将图像切分为patches,并将这些patches输入到Transformer模型中。ViT在许多图像分类任务上都取得了很好的效果。

这种方法展示了如何使用Transformer架构处理图像分类问题,尤其是MNIST这样的简单手写数字分类任务。在更复杂的图像分类任务(例如CIFAR-10、ImageNet)中,Transformer模型同样适用,但可能需要更多的计算资源和更大的数据集。


http://www.ppmy.cn/devtools/146276.html

相关文章

Springboot jar包加密加固并进行机器绑定

获取机器码,通过classfinal-fatjar-1.2.1.jar来获取机器码 命令:java -jar classfinal-fatjar-1.2.1.jar -C 对springboot打包的jar进行加密功能 java -jar classfinal-fatjar-1.2.1.jar -file lakers-ljxny-3.0.0.jar -packages com.lygmanager.laker…

华为 AI Agent:企业内部管理的智能变革引擎(11/30)

一、华为 AI Agent 引领企业管理新潮流 在当今数字化飞速发展的时代,企业内部管理的高效性与智能化成为了决定企业竞争力的关键因素。华为,作为全球领先的科技巨头,其 AI Agent 技术在企业内部管理中的应用正掀起一场全新的变革浪潮。 AI Ag…

深入理解.NET内存回收机制

[前言:].Net平台提供了许多新功能,这些功能能够帮助程序员生产出更高效和稳定的代码。其中之一就是垃圾回收器(GC)。这篇文章将深入探讨这一功能,了解它是如何工作的以及如何编写代码来更好地使用这一.Net平台提供的功…

nginx-1.23.2版本RPM包发布

nginx-1.23.2-0.x86_64.rpm用于CentOS7系统的安装,安装路径与编译安装是同一个路径。安装方法: 将nginx-1.23.2-0.x86_64.rpm上传至目标服务器,执行rpm -ivh nginx-1.23.2-0.x86_64.rpm命令进行安装。 卸载方法: 卸载前先将nginx服…

微信流量主挑战:三天25用户!功能未完善?(新纪元4)

🎉【小程序上线第三天!突破25用户大关!】🎉 嘿,大家好!今天是我们小程序上线的第三天,我们的用户量已经突破了25个!昨天还是16个,今天一觉醒来竟然有25个!这涨…

[阅读笔记]GPU-Util指标的重新理解

主要来自于文章 搞懂 NVIDIA GPU 性能指标 很容易弄混的一个概念: Utilization vs Saturation 这篇文章简单的来说,就是纠正我们对nvidia-smi中的GPU-Util这一个指标的直观理解。 在直观的理解中,这个指标应该表示GPU计算资源的饱和度&…

HTMLCSS:超级酷炫的3D照片墙

这段代码创建了一个 3D 图片轮播效果,其中包含 8 张图片。图片在 3D 空间中围绕 Y 轴旋转,形成一个循环的轮播效果。CSS 的keyframes 动画定义了图片的旋转路径,而 transform-style: preserve-3d 属性确保了 3D 效果的正确显示。每张图片通过…

【超详细实操内容】django的身份验证系统之用户登录与退出

目录 1、用户登录:login()函数 (1)补充视图函数 (2)修改 success.html文件 (3)浏览器访问: 2、用户退出:logout()函数 (1)定义视图函数,实现退出的业务逻辑 (2)定义路由绑定视图函数 (3)在success.html页面增加一个退出的按钮 3、源码 通过请求对象r…