自由学习记录(25)

devtools/2024/12/28 9:29:14/

只要有修改,子表就不用元表的参数了,用自己的参数(只不过和元表里的那个同名)

子表用__index“继承”了父表的值,此时子表仍然是空表

一定是创建这样一个同名的变量在原本空空的子表里,

传参要传具体的变量

__index

这样会报错

Lua">local obj = {}
x=1
setmetatable(obj, { __index = x}) 
print(obj.health)

Lua 对于 __index 元方法有严格要求,它必须是一个表一个函数

Lua">local obj = {}
setmetatable(obj, { __index = 42 }) -- 错误:尝试访问时 Lua 会报错print(obj.health) -- 报错:bad argument #2 to 'setmetatable' (index must be table or function)

 在 Lua 中,当 __index 被设置为 nil 时,Lua 的行为是将其视为没有定义 __index 元方法。这不会引发错误,而是简单地返回 nil

Lua 不强制要求 __index 必须被定义或赋值,只在查找键失败时才会检查是否存在有效的 __index

Lua">local obj = {}
setmetatable(obj, { __index = nil })print(obj.health) -- 输出: nil

Lua 查找一个表中不存在的键时:

  • 如果该表的元表中定义了 __index
    • 如果 __index 是表Lua 会在这个表中继续查找键。
    • 如果 __index 是函数Lua 会调用该函数,并将原表和键作为参数传递(重点在先找到,再传入参数,而且这时候的参数的self什么的也是自己此时传入的参数)
  • 如果该表的元表存在,但 __indexnil 或未定义或者有但是里面没找到Lua 会直接返回 nil,不会报错。

__index 的函数可以没有返回值

Lua 将该返回空的值也视为 nil

__index 的函数在被调用时,会自动接受两个参数(调用的表,缺失的键)

这两个参数是自动传入的,并且在实现 __index 时是强制要求的,不提供这两个参数会导致错误

Lua">local obj = {}
setmetatable(obj, {__index = function(table, key)print("Table is:", table)print("Key is:", key)return "Default value" -- 显式返回一个值end
})print(obj.health) -- 输出:
-- Table is: <table: 0x...>
-- Key is: health
-- Default value

setmetatable()

通过特殊的元方法来改变表的行为(延伸)实现默认的操作逻辑,比如算术运算比较索引函数调用等。Lua 会在对应的情况下自动调用它们。

以下是元表里常用的内容:


索引相关

__index:自定义键的访问行为

__index接受的是一个访问对象,可以是表可以是函数,但不可以是单个的变量

当访问表中不存在的键时,Lua 会去元表里的 __index 方法找值,表里有值就拿表,有方法可以返回值就接收这个返回值

示例 1:使用表提供默认值

Lua">local defaults = { health = 100, mana = 50 }
local t = {}
setmetatable(t, { __index = defaults })print(t.health) -- 输出: 100(默认值)
print(t.attack) -- 输出: nil(没有定义)

示例 2:使用函数动态生成值

Lua">local t = {}
setmetatable(t, {__index = function(_, key)return "键 " .. key .. " 不存在"end
})print(t.unknown) -- 输出: 键 unknown 不存在

__newindex:自定义键的赋值行为

当试图给表中不存在的键赋值时,Lua 会调用 __newindex 方法。

  • 可以拦截并自定义赋值逻辑。

示例:限制某些键的赋值

Lua">local t = {}
setmetatable(t, {__newindex = function(_, key, value)print("你不能直接添加新键 " .. key .. ",但我记录下来了!")end
})t.newKey = 123 -- 输出: 你不能直接添加新键 newKey,但我记录下来了!
print(t.newKey) -- 输出: nil

算术操作

元表可以通过定义算术相关的元方法,改变表在算术操作中的行为。以下是常用的元方法:

__add:加法

定义两个表相加时的行为:

Lua">local t1 = { value = 5 }
local t2 = { value = 10 }setmetatable(t1, {__add = function(a, b)return { value = a.value + b.value }end
})local result = t1 + t2
print(result.value) -- 输出: 15
__sub__mul__div__mod__pow

这些方法分别用于减法、乘法、除法、取模、幂运算。例如:

Lua">local t1 = { value = 2 }
local t2 = { value = 3 }setmetatable(t1, {__mul = function(a, b)return { value = a.value * b.value }end
})local result = t1 * t2
print(result.value) -- 输出: 6

比较操作

元表还可以控制比较操作的行为:

__eq:等于
Lua">local t1 = { id = 1 }
local t2 = { id = 1 }setmetatable(t1, {__eq = function(a, b)return a.id == b.idend
})print(t1 == t2) -- 输出: true
__lt__le:小于和小于等于
Lua">local t1 = { value = 5 }
local t2 = { value = 10 }setmetatable(t1, {__lt = function(a, b)return a.value < b.valueend
})print(t1 < t2) -- 输出: true

表的行为

__tostring:自定义表的字符串表示

用于定义表被转换为字符串时的行为,例如 print

Lua">local t = { name = "test" }setmetatable(t, {__tostring = function(table)return "表的名字是:" .. table.nameend
})print(t) -- 输出: 表的名字是:test

__len:自定义表的长度

控制 # 操作符的行为:

Lua">local t = { a = 1, b = 2 }setmetatable(t, {__len = function()return 100end
})print(#t) -- 输出: 100

__call:使表可以被调用

让表像函数一样调用:

Lua">local t = {}setmetatable(t, {__call = function(_, a, b)return a + bend
})print(t(3, 5)) -- 输出: 8

实际使用场景

元表的功能非常强大,常见的使用场景包括:

  1. 默认值表:使用 __index 为表提供默认值。
  2. 运算符重载:让自定义类型支持算术或比较运算。
  3. 面向对象编程:通过 __index 和元表实现类与对象。
  4. 只读表:使用 __newindex 拦截赋值行为,防止表被修改。
  5. 代理表:通过 __index__call 动态生成数据。

修正语法思路

关于元表绑定父表的一个小细节

Lua">local base = {name = "base",speak = function(self)print("Name is " .. self.name)end
}local derived = {}
setmetatable(derived, { __index = base })-- 调用方法
derived:speak()  -- 输出: Name is nil

解释

  • derived 没有 name 属性,speak 是从元表 base 中继承的。
  • self 绑定到调用者 derived,所以 self.namenil

如果在 derived 中添加属性,行为会改变:

derived.name = "derived"

derived:speak() -- 输出: Name is derived

当使用 : 调用方法时,Lua 会自动将表作为第一个参数传入函数,并绑定到变量 self

self 完全取决于调用者传入的第一个参数

同一个函数,被别的表继承之后,:如果要执行这个函数,self指的就是那个新的继承的表对象

这个self是动态的

这里看上去是在给Object这个表对象写新方法,但这个表对象会被作为元表去被别的表继承,

function这个东西写哪都一样,只是一种简写,对于{}调用自己的方法,然后会有一个self指代自己(这个自己不是真的要是自己,而是使用这个方法时的自己,self的功能重点不在是定义在谁的{},而在对表之间的“继承”关系的强调) 

现在再看这个继承的代码看着简单,但是通用性很强,里面的确有很多知识点

把Object声明在全局,突出class的感觉

new和subClass方法也写成全局的

不用:语法糖实现Object万物之父

所有的方法都要传入参数,这个参数不会

参数能不能传入,只靠local对参数的规定

Lua">-- Object 万物之父类
local Object = {}-- 创建新对象方法
function Object.new(self)local instance = {}setmetatable(instance, { __index = self }) -- 设置元表,继承父类的方法return instance
end-- 添加一个通用的方法
function Object.say(self, message)print("[" .. tostring(self) .. "] says: " .. message)
end-- 返回 Object 类
return Object

要实现一个万物之父的Object,

首先创建这个大表{},因为是万物之父,所以这个表里包含了new一个新的自己的能力

在这体现为function Object:new()

       .....

        end

封装

然后是对这个自我实例化的函数的实现,也就是给这个万物之父Object表{}对象,写一个可以创建出新的独立的{}表的方法(这个创建的新{}对象,里面还要实现和Object{}对象里一模一样的功能)

那问题就来到了这个新{}对象的创建,以及这个新{}要怎么复制Object对象里的各种方法和数据

这里巧妙的运用了闭包,即Object{}对象里的new方法,里面存在的各种变量,也是有生命周期的

这一点同c#

所以在这个Object{}对象里的new函数里

local obj={}

...

return obj

这个return的值在外部用变量接了就可以用了

二次强调,这个new的方法是属于Object这个{}的

lua创建一个对象的流程:先写好一个实实在在的{},然后想有新的“实例”,就通过元表setmetatable()把新的“实例”去引用上已经存在的{}里的各种...,这个部分是__index在发挥作用

换句话说,这个功能本是setmetatable()设置元表的一个小分支,

但意外的是这个小分支是实现面向对象的继承和创建新对象的关键

setmetatable()先写元表再写上面的self.__index=self

Lua热更新

Lua 是 Unity 热更新的一种常见选择,但并不是唯一的方案。

以下是详细的解释和 Lua 在 Unity 热更新中的应用场景:

Lua 热更新的核心原理

热更新的目标是在不重新发布客户端版本的情况下更新游戏逻辑Lua 作为脚本语言,可以加载和运行外部脚本文件,更新逻辑时只需替换脚本资源,而无需重新打包整个应用。

在 Unity 中,Lua 热更新通常通过以下方式实现:

  • 核心逻辑(如主角行为、UI 逻辑)写在 Lua 脚本中。
  • 在 C# 程序中嵌入 Lua 虚拟机(通常使用 LuaBridgeSLuaXLua 等工具)
  • 在运行时动态加载和执行 Lua 脚本文件,达到热更新的效果。

为什么 Lua 是热门选择

  • 游戏行业传统Lua 广泛应用于 Cocos2d、Corona、Roblox 等游戏引擎,因此在游戏行业中积累了丰富的生态和成熟的实践经验
  • Unity 插件支持:Unity 中有多个成熟的 Lua 框架(如 XLuaSLuaToLua),可以快速上手,降低实现热更新的技术门槛。
  • 适配热更新需求Lua 支持动态加载脚本,结合 Unity 的 AssetBundle 等机制,可以在运行时替换特定逻辑,满足热更新需求。

热更新的其他方案(非 Lua

  1. ILRuntime(C# 热更新)

    • ILRuntime 是一个开源的 .NET 运行时框架,可以让游戏逻辑以 C# 写成的 DLL 文件形式热更新。
    • 优点:无需学习新的语言,直接使用 C# 编写代码;性能接近原生逻辑。
    • 缺点:复杂度较高,调试和配置成本稍高于 Lua
  2. HybridCLR

    • Unity 原生不支持代码热更新,但使用 HybridCLR(开源的 AOT+Interpreter 混合运行时),可以实现类似 Lua 的热更新效果。
    • 优点:完全基于 C#,不需要引入额外语言;性能优越。
    • 缺点:配置复杂,需要对 Unity 和 CLR 有深入理解。
  3. AssetBundle 热更新

    • 通过资源的动态加载更新 UI、关卡、角色等内容,而不是直接更新逻辑。
    • 优点:简单易用,适合仅更新资源的场景。
    • 缺点:无法更新游戏逻辑。
  4. Python 或其他脚本语言

    • 某些项目可能会选择 Python 或其他轻量脚本语言(如 JavaScript)作为热更新脚本语言,但使用较少,生态不如 Lua 完善。

如果更倾向于使用 C# 完成所有开发任务,也可以探索 ILRuntimeHybridCLR 等更贴近 Unity 原生的热更新方案。

Lua的实现流程

eg:活动与任务系统

  • 实际场景
    游戏中的限时活动、节日任务等需要随时调整或增加,比如:

    • 在春节期间增加一个“新年集福活动”。

    • 在万圣节期间添加“收集南瓜”的任务,完成后奖励独特皮肤。

  • 为何需要热更新
    这些任务的规则(比如“收集多少南瓜”、“奖励什么物品”)可能需要动态调整。如果每次都通过重新发布客户端更新,这会导致玩家需要频繁下载新版本,影响体验。

  • 热更新解决方案
    开发者只需通过服务器发送新的 Lua 脚本,定义任务逻辑,客户端运行时加载这些脚本即可完成更新。

如果开发者对游戏代码进行了加密或封装,玩家无法随意加载和替换脚本内容。否则,恶意脚本可能造成数据泄露或作弊行为

游戏需要内置一个脚本虚拟机(比如 Lua VM),支持动态加载和执行外部脚本。如果没有这种机制,热更新就无法通过脚本实现。


热更新的限制

游戏逻辑中哪些部分允许用 Lua 控制,哪些是固定在 C# 或引擎层(Unity 原生)中,通常是预先定义好的

一些核心机制(如图形渲染、网络通信)往往不会交给 Lua 脚本,而是保留在底层代码中。

游戏服务器通常会校验客户端发来的逻辑更新(如活动配置、技能参数)。如果玩家任意替换脚本但未通过服务器校验,可能无法生效。

策划使用Lua

程序员需要预先用框架(如 Unity 的 XLuaToLua 或自研绑定系统)把 Lua 与游戏的核心逻辑或数据结构连接起来,让 Lua 脚本中的变量和程序代码的数据能够互相访问。以下是常见的绑定机制:

通过 Lua 表映射游戏数据

程序员定义一个数据表(如角色属性、任务数据),并通过接口将其暴露给 Lua 脚本。例如:

public class Player
{public int health = 100;public int mana = 50;
}

策划如何知道哪些变量可以用?

程序员一般要提供一份脚本文档或模板,列出策划可以操作的变量、数据结构和接口。

  • 文档需要详细说明:
    • player.health 表示角色当前血量,类型是整数;
    • enemy.attackPower 表示敌人的攻击力。
    • ...

程序员和策划需要约定数据和逻辑的名称

Lua">-- Lua 脚本
local tasks = {{ id = 1, name = "收集苹果", required = 10, reward = 100 },{ id = 2, name = "击败敌人", required = 5, reward = 200 }
}
public void LoadTaskData(LuaTable tasks)
{foreach (var task in tasks){Debug.Log($"任务 {task.name}: 收集 {task.required} 件物品,奖励 {task.reward} 金币");}
}

也可以通过工具自动生成绑定 

存在一些框架(如 XLua、ToLua)支持自动生成 Lua 脚本的 API 文档和绑定代码

程序员在 Unity 中使用 XLua,会自动生成可以在 Lua 中调用的 C# 函数和变量清单。策划直接查阅清单即可知道哪些数据可以修改。

  • 程序员的职责:通过绑定框架(如 XLua)将游戏数据和 Lua 脚本连接起来,并定义清晰的接口。
  • 策划的职责:按照约定好的变量名和函数名,在 Lua 脚本中编写逻辑,修改数据即可。
  • 工具和约定的作用:策划只需了解绑定的变量和接口,配合文档和自动生成的工具,可以轻松完成任务配置或逻辑调整。


http://www.ppmy.cn/devtools/138294.html

相关文章

三种蓝牙架构实现方案

一、蓝牙架构方案 1、hostcontroller双芯片标准架构 手机里面包含很多SoC或者模块&#xff0c;每颗SoC或者模块都有自己独有的功能&#xff0c;比如手机应用跑在AP芯片上&#xff0c;显示屏&#xff0c;3G/4G通信&#xff0c;WiFi/蓝牙等都有自己专门的SoC或者模块&#xff0…

Ubuntu nvidia-cuda-toolkit 升级

在 Ubuntu 系统上升级 nvidia-cuda-toolkit 可以通过以下步骤完成。请注意&#xff0c;升级 CUDA 工具包可能需要重新安装或更新 NVIDIA 驱动程序&#xff0c;因此请确保在升级之前备份重要数据。 1. 更新系统包列表 首先&#xff0c;确保你的系统包列表是最新的&#xff1a;…

CTF-Hub SQL 报错注入(纯手动注入)

​ 当输入1时&#xff0c;发现只有查询正确&#xff0c;基本上可以判断出没有回显 开始注入(工具hackerBar) 题目是报错注入&#xff0c;方向就比较明显&#xff0c;大致说一下用到的函数和原理。 常见报错注入函数&#xff1a; 通过 floor() 报错注入通过 extractValue() …

《使用Python进行数据挖掘:理论、应用与案例研究》

嘿&#xff0c;今天我要给你们介绍一本使用Python进行数据挖掘的好书。这本书是由吴迪博士撰写的&#xff0c;他是雷曼学院商学院的助理教授&#xff0c;也是数据科学的实战派。 在这个时代&#xff0c;数据多得让人眼花缭乱&#xff0c;要从中找出有用的信息&#xff0c;那可不…

多线程

线程是什么&#xff1f; 1、线程是进程的执行分支&#xff0c;一个进程内部的控制程序 2、一个进程至少有一个执行线程 3、从CPU角度来看&#xff0c;线程就是一个更轻量化的线程 4、线程在进程内部运行&#xff0c;所以本质就是在进程地址空间上运行 注意&#xff1a; 一…

随机变量的线性最小均方估计(LMMSE)——多个观测变量

假设有一个随机变量 x x x需要估计&#xff0c;线性最小均方误差&#xff08;Linear Minimum Mean Square Error, LMMSE&#xff09;估计的目标是找到一个线性估计器 x ^ ∑ i 0 N − 1 a i y i b \hat{x} \sum_{i0}^{N-1} a_i y_i b x^∑i0N−1​ai​yi​b&#xff0c;使…

ESP32开发板在micropython里直接用requests向web服务器发送请求:ESP32S3开发板通过fastapi中转成功连接星河大模型

在micropython里用requests连web服务器 本来想在ESP32开发板里直接连百度星河大模型&#xff0c;但是一直有报错&#xff0c;没调通&#xff0c;于是转而用fastapi进行中转&#xff0c;也就是先用ESP32连fastapi的中转服务器&#xff0c;该中转服务器再去连百度星河大模型。 W…

05—如何设计和仿真阻抗匹配网络

如何设计和仿真阻抗匹配网络 1. 介绍 在设计电路时,大部分同学只是想把布局布置的更专业,可能没有考虑串扰、电源完整性或阻抗匹配等问题。当了解天线和其他射频设备的匹配网络后,才会意识到阻抗匹配在高速和高频电路中的重要性。 但是,什么时候应该使用阻抗匹配网络?哪…