OpenCV从入门到精通实战(八)——基于dlib的人脸关键点定位

devtools/2024/11/30 10:54:05/

本文使用Python库dlib和OpenCV来实现面部特征点的检测和标注。

下面是代码的主要步骤和相关的代码片段:

步骤一:导入必要的库和设置参数

首先,代码导入了必要的Python库,并通过argparse设置了输入图像和面部标记预测器的参数。

from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2

步骤二:定义面部关键点索引

使用OrderedDict定义了两组面部关键点,一组包含68个点,另一组包含5个点,这些关键点用于后续的特征提取。

FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])

步骤三:人脸检测和关键点预测

使用dlib的面部检测器和预测器,对输入的图像进行人脸检测,并对每个检测到的人脸进行关键点定位。

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])

步骤四:关键点转换和可视化

将dlib的关键点数据结构转换为NumPy数组,然后通过自定义的visualize_facial_landmarks函数在图像上绘制关键点和凸包。

def shape_to_np(shape, dtype="int"):coords = np.zeros((shape.num_parts, 2), dtype=dtype)for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coordsdef visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建overlay, 绘制关键点和凸包

步骤五:处理每一个检测到的人脸

对于图像中每一个检测到的人脸,提取关键点,可视化,并显示每个部分的区域图像。

for (i, rect) in enumerate(rects):shape = predictor(gray, rect)shape = shape_to_np(shape)output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

本文使用dlib和OpenCV对人脸图像进行关键点检测,并将检测到的关键点用于图像处理和分析。通过不同的面部部分的关键点,可以在应用程序中实现多种面部识别和分析功能。

#导入工具包
from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2# 参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", default="shape_predictor_68_face_landmarks.dat",help="path to facial landmark predictor")
ap.add_argument("-i", "--image", default="images/liudehua2.jpg",help="path to input image")
args = vars(ap.parse_args())FACIAL_LANDMARKS_68_IDXS = OrderedDict([("mouth", (48, 68)),("right_eyebrow", (17, 22)),("left_eyebrow", (22, 27)),("right_eye", (36, 42)),("left_eye", (42, 48)),("nose", (27, 36)),("jaw", (0, 17))
])FACIAL_LANDMARKS_5_IDXS = OrderedDict([("right_eye", (2, 3)),("left_eye", (0, 1)),("nose", (4))
])def shape_to_np(shape, dtype="int"):# 创建68*2coords = np.zeros((shape.num_parts, 2), dtype=dtype)# 遍历每一个关键点# 得到坐标for i in range(0, shape.num_parts):coords[i] = (shape.part(i).x, shape.part(i).y)return coordsdef visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):# 创建两个copy# overlay and one for the final output imageoverlay = image.copy()output = image.copy()# 设置一些颜色区域if colors is None:colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),(168, 100, 168), (158, 163, 32),(163, 38, 32), (180, 42, 220)]# 遍历每一个区域for (i, name) in enumerate(FACIAL_LANDMARKS_68_IDXS.keys()):# 得到每一个点的坐标(j, k) = FACIAL_LANDMARKS_68_IDXS[name]pts = shape[j:k]# 检查位置if name == "jaw":# 用线条连起来for l in range(1, len(pts)):ptA = tuple(pts[l - 1])ptB = tuple(pts[l])cv2.line(overlay, ptA, ptB, colors[i], 2)# 计算凸包else:hull = cv2.convexHull(pts)cv2.drawContours(overlay, [hull], -1, colors[i], -1)# 叠加在原图上,可以指定比例cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)return output# 加载人脸检测与关键点定位
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])# 读取输入数据,预处理
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
width=500
r = width / float(w)
dim = (width, int(h * r))
image = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 人脸检测
rects = detector(gray, 1)# 遍历检测到的框
for (i, rect) in enumerate(rects):# 对人脸框进行关键点定位# 转换成ndarrayshape = predictor(gray, rect)shape = shape_to_np(shape)# 遍历每一个部分for (name, (i, j)) in FACIAL_LANDMARKS_68_IDXS.items():clone = image.copy()cv2.putText(clone, name, (10, 30), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)# 根据位置画点for (x, y) in shape[i:j]:cv2.circle(clone, (x, y), 3, (0, 0, 255), -1)# 提取ROI区域(x, y, w, h) = cv2.boundingRect(np.array([shape[i:j]]))roi = image[y:y + h, x:x + w](h, w) = roi.shape[:2]width=250r = width / float(w)dim = (width, int(h * r))roi = cv2.resize(roi, dim, interpolation=cv2.INTER_AREA)# 显示每一部分cv2.imshow("ROI", roi)cv2.imshow("Image", clone)cv2.waitKey(0)# 展示所有区域output = visualize_facial_landmarks(image, shape)cv2.imshow("Image", output)cv2.waitKey(0)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


http://www.ppmy.cn/devtools/138168.html

相关文章

AMAZINGIC晶焱科技:AZ5A05-01M:Edge AI 电子系统的完美终极守护者

AMAZINGIC晶焱科技:AZ5A05-01M:Edge AI 电子系统的完美终极守护者 随着 Edge AI 技术蓬勃发展,从 AI 个人电脑、AI 智能手机到 AIoT 智慧物联网设备,未来的智能化世界正以惊人速度成形。然而,工程师们也正面临一场前所…

EXCEL中的科学计数法:为何存在与用户的无奈

在数据处理和分析的世界里,Excel无疑是一个无可替代的工具。无论是商业分析、学术研究还是日常办公,Excel的普及程度几乎无人能敌。然而,对于这样一款功能强大的软件,其自动使用科学计数法的行为却常常让许多用户感到困惑和不满&a…

Web Worker 和 WebSocket的区别

Web Worker(消息传递机制) 定义:是为了在浏览器中提供多线程支持,允许 JavaScript 在后台线程运行,而不阻塞主线程。它非常适合执行耗时的计算任务或处理大量数据,避免主线程(通常是 UI 线程&a…

[论文阅读]Poisoning Retrieval Corpora by Injecting Adversarial Passages

Poisoning Retrieval Corpora by Injecting Adversarial Passages 通过注入对抗性文本对检索语料库进行中毒 http://arxiv.org/abs/2310.19156 EMNLP2023 文章的目标就是要让检索器检索的结果包含攻击者生成的对抗性文本,如果能够检索到,则认为攻击成…

Linux操作系统学习---初识环境变量

目录 ​编辑 环境变量的概念: 小插曲:main函数的第一、二个参数 获取环境变量信息: 1.main函数的第三个参数 2.查看单个环境变量 3.c语言库函数getenv() 和环境变量相关的操作指令: 1.export---导出环境变量: 2.unse…

存储结构及关系(一)

学习目标 描述数据库的逻辑结构列出段类型及其用途列出控制块空间使用的关键字获取存储结构信息 段的类型 段是数据库中占用空间的对象。它们使用数据库数据文件中的空间。介绍不同类型的段。 表 表是在数据库中存储数据的最常用方法。表段用于存储既没有集群也没有分区的表…

zabbix搭建教程

部署服务端 1.安装源rpm -Uvh https://mirrors.aliyun.com/zabbix/zabbix/5.0/rhel/7/x86_64/zabbix-release-5.0-1.el7.noarch.rpm 2.修改源 修改为阿里云sed -i s#http://repo.zabbix.com#https://mirrors.aliyun.com/zabbix# /etc/yum.repos.d/zabbix.repo 3.清除旧的yum缓…

GoogleTest做单元测试

目录 环境准备GoogleTest 环境准备 git clone https://github.com/google/googletest.git说cmkae版本过低了,解决方法 进到googletest中 cmake CMakeLists.txt make sudo make installls /usr/local/lib存在以下文件说明安装成功 中间出了个问题就是,…