【视觉SLAM】4b-特征点法估计相机运动之PnP 3D-2D

devtools/2024/11/26 1:07:54/

文章目录

  • 0. 前言
  • 1. PnP求解
    • 1.1 直接线性变换DLT
    • 1.2 P3P
    • 1.3 光束平差法BA
  • 2. 实现

0. 前言

透视n点(Perspective-n-Point,PnP)问题是计算机视觉领域的经典问题,用于求解3D-2D的点运动。换句话说,当知道 N N N个世界坐标系中3D空间点的坐标以及它们在图像上的投影点像素坐标时,可以使用PnP算法来估计相机在世界坐标系的姿态。P3P是最简化的PnP形式,即最少只需3个点即可估计当前的相机姿态(解不唯一)。

总体来说,PnP的求解方法有P3P、直接线性变换(Direct Linear Transformation,DLT)、EPnP(Efficient PnP)和UPnP等。此外,还有非线性优化解法,通过构建最小二乘问题并迭代求解,即万金油式的光束平差法(Bundle Adjustment,BA)

PnP_7">1. PnP求解

1.1 直接线性变换DLT

假设有世界坐标系中的3D点 P = [ X , Y , Z , 1 ] T P=[X, Y, Z, 1]^T P=[X,Y,Z,1]T,在图像 I 1 I_1 I1中对应的投影像素点为 x 1 = [ u 1 , v 1 , 1 ] T x_1=[u_1, v_1, 1]^T x1=[u1,v1,1]T,根据相机小孔成像模型有:

s [ u 1 v 1 1 ] = [ R ∣ t ] P = [ t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ] [ X Y Z 1 ] s \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}= \begin{bmatrix} R | t \end{bmatrix} P= \begin{bmatrix} t_1 & t_2 & t_3 & t_4 \\ t_5 & t_6 & t_7 & t_8 \\ t_9 & t_{10} & t_{11} & t_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} s u1v11 =[Rt]P= t1t5t9t2t6t10t3t7t11t4t8t12 XYZ1

其中 s = Z s=Z s=Z,利用最后一行将其消去有:

{ s u 1 = t 1 X + t 2 Y + t 3 Z + t 4 s v 1 = t 5 X + t 6 Y + t 7 Z + t 8 s = t 9 X + t 10 Y + t 11 Z + t 12 ⇒ { u 1 = t 1 X + t 2 Y + t 3 Z + t 4 t 9 X + t 10 Y + t 11 Z + t 12 v 1 = t 5 X + t 6 Y + t 7 Z + t 8 t 9 X + t 10 Y + t 11 Z + t 12 \begin{cases} s u_1 = t_1 X + t_2 Y + t_3 Z + t_4\\ s v_1 = t_5 X + t_6 Y + t_7 Z + t_8\\ s = t_9 X + t_{10} Y + t_{11} Z + t_{12} \end{cases} \Rightarrow \begin{cases} u_1 = \frac{t_1 X + t_2 Y + t_3 Z + t_4}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ v_1 = \frac{t_5 X + t_6 Y + t_7 Z + t_8}{t_9 X + t_{10} Y + t_{11} Z + t_{12}} \\ \end{cases} \\ su1=t1X+t2Y+t3Z+t4sv1=t5X+t6


http://www.ppmy.cn/devtools/136983.html

相关文章

什么是Sass,有什么特点

Sass 概述 什么是 Sass? Sass(Syntactically Awesome Style Sheets)是一种 CSS 预处理器,它扩展了 CSS 的功能,使其更加强大和灵活。Sass 允许开发者使用变量、嵌套规则、混合宏、继承等高级特性,从而编写…

输入三个整数x,y,z,请把这三个数由小到大输出。-多语言实现

目录 C 语言实现 Python 实现 Java 实现 Js 实现 题目:输入三个整数x,y,z,请把这三个数由小到大输出。 程序分析:我们想办法把最小的数放到x上,先将x与y进行比较,如果x>y则将x与y的值进行交换,然后…

10大核心应用场景,解锁AI检测系统的智能安全之道

随着工业化和自动化的快速推进,高风险作业场景的安全管理需求日益增加。思通数科AI检测系统以深度学习、计算机视觉和多模态数据融合技术为基础,通过智能化监控和实时反馈,为企业提供全面的作业安全和流程管理解决方案。本文将详细解读该系统…

Python+7z:将文件和目录压缩为ZIP文件

在这个教程中,我们将学习如何使用Python脚本将文件和目录压缩为ZIP文件。我们将使用subprocess模块来调用外部命令行工具7z,这是一个功能强大的文件压缩工具。以下是详细的步骤和代码解析。 1. 准备工作 在开始之前,请确保你的系统中已经安…

【WPF】Prism学习(十)

Prism MVVM 1.BindableBase 1.1. BindableBase的作用: Prism库提供了一个基础类BindableBase,这个类实现了INotifyPropertyChanged接口。这个接口允许ViewModel(视图模型)通知视图(View)当属性&#xff0…

MongoDB相关问题

视频教程 【GeekHour】20分钟掌握MongoDB Complete MongoDB Tutorial by Net Ninja MongoDB开机后调用缓慢的原因及解决方法 问题分析: MongoDB开机后调用缓慢,通常是由于以下原因导致: 索引重建: MongoDB在启动时会重建索引…

揭秘区块链隐私黑科技:零知识证明如何改变未来

文章目录 1. 引言:什么是零知识证明?2. 零知识证明的核心概念与三大属性2.1 完备性(Completeness)2.2 可靠性(Soundness)2.3 零知识性(Zero-Knowledge) 3. 零知识证明的工作原理4. 零…

Python Selenium:Web自动化测试与爬虫开发

Python Selenium:Web自动化测试与爬虫开发 Python Selenium:Web自动化测试与爬虫开发安装Selenium设置WebDriver基础示例页面元素交互处理JavaScript和Cookies浏览器控制屏幕截图Headless Mode结束会话错误处理与调试 ***本文由AI辅助生成*** Python Se…