【通俗理解】ELBO(证据下界)——机器学习中的“情感纽带”

devtools/2024/11/24 6:05:59/

【通俗理解】ELBO(证据下界)——机器学习中的“情感纽带”

关键词提炼

#ELBO #证据下界 #变分推断 #机器学习 #潜变量模型 #KL散度 #期望 #对数似然

第一节:ELBO的类比与核心概念【尽可能通俗】

ELBO,即证据下界,在机器学习中扮演着“情感纽带”的角色,它连接着模型的真实后验分布与我们通过变分推断得到的近似后验分布。就像恋爱中的两个人,虽然无法完全重合,但通过ELBO这个“纽带”,我们可以找到他们之间最紧密的联系。

第二节:ELBO的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
ELBOEvidence Lower BOund,即证据下界,是变分推断中用于近似后验分布的目标函数。像是恋爱中的“最低标准”,确保双方关系不会太差。
变分推断一种用于潜变量模型推断的方法,通过优化ELBO来近似真实的后验分布。像是恋爱中的“磨合过程”,不断调整以找到最佳状态。
KL散度Kullback-Leibler Divergence,衡量两个分布之间差异的度量。像是恋爱中的“距离感”,表示双方之间的差异程度。

2.2 优势与劣势

方面描述
优势提供了明确的优化目标,使得变分推断成为可能;能够处理复杂的潜变量模型,提高模型的表达能力。
劣势ELBO的求解通常涉及复杂的数学运算,需要较高的数学功底;对于某些模型,ELBO可能不是最优的近似方法。

2.3 与机器学习的类比

ELBO在机器学习中就像是恋爱中的“共同目标”,它引导着模型(或恋人)不断接近真实(或理想)的状态,虽然可能无法完全达到,但在这个过程中,双方都在不断成长和进步。

第三节:公式探索与推演运算【重点在推导】

3.1 ELBO的基本形式

ELBO的基本形式为:

ELBO ( θ , ϕ ) = E q ϕ ( z ∣ x ) [ log ⁡ p θ ( x , z ) ] − E q ϕ ( z ∣ x ) [ log ⁡ q ϕ ( z ∣ x ) ] \text{ELBO}(\theta, \phi) = \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x, z)] - \mathbb{E}_{q_\phi(z|x)}[\log q_\phi(z|x)] ELBO(θ,ϕ)=Eqϕ(zx)[logpθ(x,z)]Eqϕ(zx)[logqϕ(zx)]

其中, θ \theta θ ϕ \phi ϕ 分别是模型参数和变分参数, x x x 是观测数据, z z z 是潜变量, p θ ( x , z ) p_\theta(x, z) pθ(x,z) 是联合概率分布, q ϕ ( z ∣ x ) q_\phi(z|x) qϕ(zx) 是近似后验分布。

3.2 公式拆解与推演

ELBO由两部分组成:第一部分是期望下的对数联合概率(即期望的“好处”),第二部分是期望下的对数近似后验概率(即期望的“代价”)。

  • 期望的“好处” E q ϕ ( z ∣ x ) [ log ⁡ p θ ( x , z ) ] \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x, z)] Eqϕ(zx)[logpθ(x,z)],表示在近似后验分布下,联合概率的对数期望。这就像是恋爱中,双方共同期待的美好未来。
  • 期望的“代价” E q ϕ ( z ∣ x ) [ log ⁡ q ϕ ( z ∣ x ) ] \mathbb{E}_{q_\phi(z|x)}[\log q_\phi(z|x)] Eqϕ(zx)[logqϕ(zx)],表示在近似后验分布下,自身概率的对数期望。这就像是恋爱中,为了维持关系所需要付出的努力。

因此,ELBO可以看作是“好处”与“代价”之间的权衡,我们希望通过优化ELBO来找到最佳的近似后验分布。

3.3 具体实例与推演

假设我们有一个简单的潜变量模型,其中观测数据 x x x 是由潜变量 z z z 生成的。我们可以通过变分推断来近似 z z z 的后验分布。在这个过程中,我们需要不断优化ELBO,使得近似后验分布越来越接近真实的后验分布。

第四节:相似公式比对【重点在差异】

公式/模型共同点不同点
最大似然估计都涉及对数似然的使用。最大似然估计直接优化对数似然,而ELBO是优化对数似然的下界。
贝叶斯推断都涉及潜变量的处理。贝叶斯推断通过精确推断来得到后验分布,而ELBO是通过近似推断来得到后验分布的近似。

第五节:核心代码与可视化【全英文的代码,标签label尤其需要是英文的!】

这段代码使用TensorFlow框架实现了ELBO的计算,并绘制了ELBO随迭代次数的变化曲线。通过可视化,我们可以直观地看到优化过程中的ELBO变化。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define the model parameters and variational parameters
theta = tf.Variable(0.0, trainable=True)
phi = tf.Variable(0.0, trainable=True)# Define the joint probability and approximate posterior probability
def joint_probability(x, z, theta):# Example joint probability functionreturn tf.exp(-tf.square(x - z * theta))def approximate_posterior(z, phi):# Example approximate posterior functionreturn tf.exp(-tf.square(z - phi))# Define the ELBO function
def elbo(x, theta, phi):z = tf.random.normal(shape=x.shape)log_joint = tf.math.log(joint_probability(x, z, theta))log_q = tf.math.log(approximate_posterior(z, phi))return tf.reduce_mean(log_joint - log_q)# Generate some synthetic data
x_data = np.random.normal(size=100)# Define the optimizer
optimizer = tf.optimizers.Adam(learning_rate=0.01)# Training loop
elbo_values = []
for epoch in range(1000):with tf.GradientTape() as tape:elbo_value = elbo(x_data, theta, phi)elbo_values.append(elbo_value.numpy())gradients = tape.gradient(elbo_value, [theta, phi])optimizer.apply_gradients(zip(gradients, [theta, phi]))if epoch % 100 == 0:print(f"Epoch {epoch}, ELBO: {elbo_value.numpy()}")# Visualize the ELBO values over epochs
sns.set_theme(style="whitegrid")
plt.plot(elbo_values, label='ELBO')
plt.xlabel('Epoch')
plt.ylabel('ELBO Value')
plt.title('ELBO Over Epochs')
plt.legend()
plt.show()# Printing more detailed output information
print("ELBO plot has been generated and displayed. \nThe plot illustrates the change of ELBO value over epochs during the optimization process.")

在这里插入图片描述

输出内容描述
ELBO随迭代次数的变化曲线图显示了优化过程中ELBO值的变化情况。
图表标题、x轴标签、y轴标签和图例提供了图表的基本信息和说明。
详细的输出信息(打印到控制台)提供了关于ELBO变化曲线图的详细解释和迭代过程中的ELBO值。

参考文献

  1. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. [【影响因子=3.8,统计学领域权威期刊】]内容概述:该论文对变分推断进行了全面的综述,介绍了其基本原理、方法以及在统计学中的应用。
  2. Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In International Conference on Learning Representations. [【会议论文,机器学习领域重要会议】]内容概述:该论文提出了自动编码变分贝叶斯(AEVB)算法,通过变分推断来优化潜变量模型的参数,为后续的变分推断研究提供了重要的思路和方法。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

http://www.ppmy.cn/devtools/136473.html

相关文章

不同路径.

本节通过一个求不同路径的实例,再次巩固二维动态规划的基础. 问题描述: 一个机器人位于一个m*n网格的左上角,机器人每次只能向下或者向右移动一步.机器人试图到达网格的右下角,问总共有多少种不同的路径?mhen的值均不超过100. 动态规划算法思路解析: 首先理解题目.机器人每…

03-03、SpringCloud第三章,负载均衡Ribbon和Feign

SpringCloud从看不懂到放弃,第三章 一、Ribbon负载均衡Load Balance 思考 Ribbon、Nginx、Feign 三者有什么区别1、Ribbon简介 1)、Ribbon是一套 【客户端】 的 【负载均衡】 工具2)、负载均衡(Load Balance)分为 集…

自动控制原理 第五章(线性系统的频域分析与校正)(二)

三、对数频率特性(Bode图) 1、典型环节的Bode图 (1)比例环节: (2)微分环节: (3)积分环节: (4)惯性环节: ①…

ARM 架构(Advanced RISC Machine)精简指令集计算机(Reduced Instruction Set Computer)

文章目录 1、ARM 架构ARM 架构的特点ARM 架构的应用ARM 架构的未来发展 2、RISCRISC 的基本概念RISC 的优势RISC 的应用RISC 与 CISC 的对比总结 1、ARM 架构 ARM 架构是一种低功耗、高性能的处理器架构,广泛应用于移动设备、嵌入式系统以及越来越多的服务器和桌面…

4.4 MySQL 触发器(Trigger)

触发器是一种特殊的数据库对象,在特定事件(如INSERT、UPDATE或DELETE)触发时自动执行定义好的操作。它可以帮助我们实现更高效的数据管理和业务规则的约束。 1. 简介 1.1 什么是触发器 触发器(Trigger)是由用户定义的…

react中Fragment的使用场景

在 React 中,Fragment 是一个非常有用的组件,允许你将多个子元素包裹在一起,而不会在 DOM 中产生额外的节点。它通常用于以下几个场景: import React, {Fragment} from react; 1. 返回多个子元素而不添加额外的 DOM 元素&#x…

CSS 设置宽高的单位概览

CSS 设置宽高的单位概览 在 CSS 中,设置宽度和高度的单位有多种,每种单位都有特定的用途和适用场景。下面是常见的单位整理及使用示例。 单位类型代表性单位使用场景视口单位vw, vh响应式布局,全屏背景百分比单位%相对父元素的宽高调整绝对…

自监督学习:从概念到应用的全面解析

引言 自监督学习(Self-Supervised Learning, SSL)是近年来机器学习领域的重要进展,它以未标注数据为核心,通过设计自生成标签的任务,挖掘数据的潜在结构和特征表示。在计算机视觉、自然语言处理(NLP&#…