联合物种分布模型HMSC开展单物种和多物种分析技术细节及HMSC包的实际应用;群落生态学数据分析、物种分布预测、假说验证等

devtools/2024/11/14 3:20:36/

目录

专题1:R/Rstudio简介及入门 夯实基础

专题2:群落生态学及数据统计分析概述

专题3:联合物种分布模型Hmsc及群落数据贝叶斯统计

专题4:单物种(物种水平)/单变量Hmsc贝叶斯统计

专题5:多物种(群落水平)Hmsc贝叶斯统计模型

专题6:Hmsc包群落生态数据分析高阶应用经典案例


联合物种分布模型(Joint Species Distribution Modelling,JSDM)在生态学领域,特别是群落生态学中发展最为迅速,它在分析和解读群落生态数据的革命性和独特视角使其受到广大国内外学者的关注。在学界不同研究团队研发出不同的联合物种模型,其中由芬兰的Ovaskainen教授领导的团队研发的R语言程序包Hmsc发展势头最为强劲。Hmsc是物种群落分层模型的缩写(Hierarchical Modelling of Species Communities),它是一种基于贝叶斯统计的多元分层广义线性混和效应模型( A multivariate hierarchical generalized linear mixed model fitted with Bayesian inference)。该模型可以同时考虑物种多度、环境变量、系统发育信息、物种属性及时空数据,是目前对于群落生态学各种数据利用最为充分的模型。它既可以对于单物种(变量)开展分析(可替代贝叶斯广义线性混合效应模型);又可以同时开展多物种(群落水平)分析,将生态位假说、生物交互作用(种间关联)、物种扩散限制及物种属性和系统发育对物种分布的影响等进行综合考虑。

本次教程以Hmsc包为对象,从群落生态学研究进展入手,逐步介绍Hmsc包对于群落生态学假说的解读、Hmsc包开展单物种和多物种分析的技术细节及Hmsc包的实际应用(具体案例)。通过模型定义、拟合、诊断、评估、预测及结果展示的详细步骤和操作由浅入深讲解使大家掌握此模型方法,实现群落数据分析、物种分布预测、假说验证等工作以解决实际研究和工作中遇到的相关科学问题。适合拟开展物种分布模型和生物群落数据分析应用需求的研究生和科研人员。

专题1:R/Rstudio简介及入门 夯实基础

1)R及Rstudio介绍:背景、软件及程序包安装、基本设置等
2)R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等
3)R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)
4)R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

专题2:群落生态学及数据统计分析概述

1)群落生态学发展和研究趋势简介
2)群落形成机制及物种装配规则(Species Assemble Rules)
3)群落生态数据类型、特点及准备
4)群落生态数据与群落生态学主要科学问题关联

专题3:联合物种分布模型Hmsc及群落数据贝叶斯统计

1)联合物种分布模型Hmsc贝叶斯统计简介
2)联合物种分布模型Hmsc参数估计MCMC
3)联合物种分布模型Hmsc参数及对应群落生态假说

专题4:单物种(物种水平)/单变量Hmsc贝叶斯统计

1)Hmsc程序包基本语法、参数选择、固定效应和随机效应设置、模型诊断等
2)Hmsc单变量贝叶斯估计VS 单变量brms包贝叶斯估计异同
3)Hmsc物种属性数据单变量贝叶斯估计案例
4)Hmsc物种有无(0,1)数据单变量贝叶斯估计案例
5)Hmsc计数数据(多度)单变量贝叶斯估计案例(泊松分布、过度离散、零膨胀等)
6)Hmsc混合效应模型:固定效应+混合效应+空间自相关

专题5:多物种(群落水平)Hmsc贝叶斯统计模型

1)Hmsc多物种(群落水平)贝叶斯统计模型构建介绍

2)Hmsc低维多物种联合分布模型构建
(1)模型构建、物种分布设置
(2)解释变量引入(环境筛)
(3)物种关联关系确定(生物筛)
(4)模型诊断及性能评估

3)Hmsc高维多物种联合分布模型构建
(1)模型构建、物种分布设置
(2)物种性状、系统发育信息及环境变量引入
(3)模型诊断及性能评估
(4)模型调整(先验分布、解释变量等)、拟合和重评估
(5)结果展示,包括参数热图、种间关联、变差分解(Variation Partitioning)及排序(潜变量)等

专题6:Hmsc包群落生态数据分析高阶应用经典案例

1)Hmsc包开展群落数据联合物种分布模型分析通用流程(Pipelines)
2)Hmsc分析物种属性与环境关系案例
3)Hmsc分析响应变量为不同分布类型案例
4)Hmsc空间数据分析案例
5)Hmsc时间数据分析案例
6)Hmsc模型中环境变量、物种属性、系统发育、数据分层设置综合案例

注:请提前安装所需软件


R语言生物群落(生态)数据统计分析与绘图丨tidyverse数据清洗、多元统计分析、随机森林、回归及混合效应模型、结构方程模型等-CSDN博客文章浏览阅读1k次,点赞14次,收藏5次。以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中的实例,详细讲述各方法的R语言实现途径(详见教学内容)。主要特点为聚焦生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果展示的完整科学研究数据分析过程,将《R语言基础》、《tidyverse数据清洗》、《多元统计分析》、《随机森林模型》、《回归及混合效应模型》、《结构方程模型》及《统计结果作图》进行了组合(7合1)。https://blog.csdn.net/WangYan2022/article/details/143563087?spm=1001.2014.3001.5502

★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓


http://www.ppmy.cn/devtools/133335.html

相关文章

ESLint 使用教程(四):ESLint 有哪些执行时机?

前言 ESLint 作为一个静态代码分析工具,可以帮助我们发现和修复代码中的问题,保持代码风格的一致性。然而,ESLint的最佳实践不仅仅在于了解其功能,更在于掌握其执行时机。本文将详细介绍ESLint在不同开发阶段的执行时机&#xff…

关于git使用的图文教程(包括基本使用,处理冲突问题等等)超详细

目录 用户签名,初始化git git提交流程图 提交到本地库 版本穿梭 分支操作 分支合并冲突 团队协作 github的使用 推送代码 克隆 拉取代码 团队协作冲突 团队协作之分支管理 推送分支到分支: 拉去远程库分支到本地库: 本地删除远程分支&am…

MySQL变量详解

MySQL变量详解 MySQL 中的变量主要用于在 SQL 语句中存储和传递值,可以显著提高数据库操作的灵活性和效率。MySQL 支持多种类型的变量,每种变量都有其特定的用途和作用范围。本文将详细介绍 MySQL 中几种主要变量的使用方法和注意事项。 1. 用户定义的…

web——[GXYCTF2019]Ping Ping Ping1——过滤和绕过

0x00 考点 0、命令联合执行 ; 前面的执行完执行后面的 | 管道符,上一条命令的输出,作为下一条命令的参数(显示后面的执行结果) || 当前面的执行出错时(为假)执行后面的 & 将任…

PHP API的路由设计思路

PHP API的路由设计是构建高效、可维护API的关键环节。以下是一套完整的PHP API路由设计思路: 一、明确设计原则 使用统一资源标识符(URI):通过URI来标识资源,确保每个资源都有一个唯一的地址。使用HTTP方法&#xff…

智慧城市路面垃圾识别系统产品介绍方案

方案介绍 智慧城市中的路面垃圾识别算法通常基于深度学习框架,这些算法因其在速度和精度上的优势而被广泛采用。这些模型能够通过训练识别多种类型的垃圾,包括塑料袋、纸屑、玻璃瓶等。系统通过训练深度学习模型,使其能够识别并定位多种类型…

Docker:镜像构建 DockerFile

Docker:镜像构建 DockerFile 镜像构建docker build DockerfileFROMCOPYENVWORKDIRADDRUNCMDENTRYPOINTUSERARGVOLUME 镜像构建 在Docker官方提供的镜像中,大部分都是基础镜像,他们只提供某个简单的功能,如果想要一个功能更加丰富…

设计模式介绍

设计模式通常包含以下几个要素: 1. 模式名称:每个设计模式都有一个独特的名称,用于标识该模式。 2. 问题:描述了在何种情况下使用该设计模式,以及使用该模式需要解决的具体问题。 3. 解决方案:提供了针对上…