【果实种子识别】Python+深度学习+人工智能+CNN卷积神经网络算法+TensorFlow+算法模型训练

devtools/2025/2/12 9:24:14/

一、介绍

果实种子识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实(‘杏仁’, ‘巴西坚果’, ‘腰果’, ‘椰子’, ‘榛子’, ‘夏威夷果’, ‘山核桃’, ‘松子’, ‘开心果’, ‘核桃’)等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。

二、系统效果图片展示

img_07_03_20_28_56

img_07_03_20_29_09

img_07_03_20_29_24

img_07_03_20_29_39

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/wm69eif83lvcqg4g

四、卷积神经网络特点及原理

卷积神经网络(CNN)是一种特别适用于处理图像和视频数据的深度学习模型。它的设计灵感来源于生物视觉系统的结构,尤其是猫的视觉皮层。CNN的关键特点和工作原理可以总结如下:
层级结构:
CNN由多个层组成,每层都有特定的功能。最常见的层包括:

  • 卷积层(Convolutional Layer):这是CNN的核心。卷积层通过卷积核(小矩阵)在输入图像上滑动,对每个位置进行计算,从而提取图像的局部特征。每个卷积核可以识别图像中的不同特征,如边缘、纹理等。
  • 激活层(Activation Layer):通常使用ReLU(Rectified Linear Unit)激活函数,将卷积层输出的负值变为零,增加模型的非线性,使其能够更好地表示复杂特征。
  • 池化层(Pooling Layer):通过下采样(如最大池化或平均池化)减少特征图的尺寸,从而降低计算量和防止过拟合。
  • 全连接层(Fully Connected Layer):连接所有神经元,通常用于分类任务的最后几层,将特征图转换为类别概率。

特征提取与学习:
在图像识别过程中,CNN能够自动从输入图像中提取多层次的特征。比如,最初几层可能会提取简单的边缘和线条,中间几层会提取复杂的图案和形状,最后几层则会识别出高层次的语义信息,如人脸、汽车等。
实现图像识别的过程:
CNN实现图像识别的过程可以概括为以下几个步骤:

  1. 输入图像:将图像输入到卷积神经网络中。
  2. 特征提取:通过多个卷积层、激活层和池化层,逐层提取图像的特征。
  3. 分类:将提取的特征输入到全连接层,通过Softmax或其他激活函数输出各类别的概率。
  4. 预测结果:根据输出的概率值,选择概率最高的类别作为预测结果。

http://www.ppmy.cn/devtools/132589.html

相关文章

【LuatOS】基于WebSocket的同步请求框架

0x00 缘起 由于使用LuatOS PC模拟器发起快速且海量HTTP请求(1000 次/秒)时,会耗尽PC的TCP连接资源,而无法进行继续进行访问请求。故使用WebSocket搭建类似于HTTP的“同步请求相应”的通信框架,以实现与HTTP类似的功能…

用友U8接口-isHasCounterSignPiid错误

错误消息 调用U813的审批流方法报错,找不到方法:“Boolean UFIDA.U8.Audit.BusinessService.ManualAudit.isHasCounterSignPiid System.Web.Services.Protocols.SoapException:服务器无法处理请求。 ---> System.MissingMethodException: 找不到方法:“Boolean…

spring boot 项目配置https服务

怀旧网个人博客网站地址:怀旧网,博客详情:spring boot 项目配置https服务 第一步:申请ssl证书 在自己的域名注册网站可以申请,建议使用腾讯的ssl证书申请服务(免费) 申请时需要绑定需要添加htt…

任务中心全新升级,新增分享接口文档功能,MeterSphere开源持续测试工具v3.4版本发布

2024年11月5日,MeterSphere开源持续测试工具正式发布v3.4版本。 在这一版本中,系统设置方面,任务中心支持实时查看系统即时任务与系统后台任务;接口测试方面,新增接口文档分享功能、接口场景导入导出功能,…

Node.js 常用工具util、文件系统使用介绍 (基础介绍 七)

常用工具util util 是一个Node.js 核心模块,提供常用函数的集合,用于弥补核心 JavaScript 的功能 过于精简的不足。 使用方法如下: const util require(util); util.callbackify util.callbackify(original) 将 async 异步函数&#xff…

掌握 .NET 8 中最小 API 的单元和集成测试:高质量代码的最佳实践

在 .NET 8 中开发最小 API 时,测试是确保 API 可靠、可扩展且可维护的关键步骤。结构良好的单元和集成测试可以显著提高 API 的质量,帮助您及早发现错误,并保证您的代码在各种场景中都能按预期运行。 在这篇博文中,我们将介绍如何…

打字机效果显示

文章目录 打字机效果显示一、效果图二、视频效果三、代码 打字机效果显示 一、效果图 二、视频效果 B站-打字机效果图 打字机效果 打字机效果 三、代码 框架&#xff1a; <div class"t_title"><span>我的能力</span> <!-- <span>使…

供应商srm管理,招投标管理,电子采购管理,在线询价,在线报价,供应商准入审核(java代码)

前言&#xff1a; 随着互联网和数字技术的不断发展&#xff0c;企业采购管理逐渐走向数字化和智能化。数字化采购平台作为企业采购管理的新模式&#xff0c;能够提高采购效率、降低采购成本、优化供应商合作效率&#xff0c;已成为企业实现效益提升的关键手段。系统获取在文末…