YOLOv8改进 | 特征融合篇,YOLOv8添加iAFF(多尺度通道注意力模块),并与C2f结构融合,提升小目标检测能力

devtools/2024/11/15 4:14:57/

在这里插入图片描述

摘要

特征融合,即来自不同层或分支的特征的组合,是现代网络架构中无处不在的一部分。虽然它通常通过简单的操作(如求和或拼接)来实现,但这种方式可能并不是最佳选择。在这项工作中,提出了一种统一且通用的方案,即注意力特征融合(Attentional Feature Fusion),适用于大多数常见场景,包括短跳跃连接和长跳跃连接引起的特征融合以及 Inception 层内的特征融合。传统注意力机制往往忽略了不同尺度的特征问题,尤其是当融合特征来自不同尺度的层时。为了更好地融合语义和尺度不一致的特征,提出了一个多尺度通道注意力模块(Multi-Scale Channel Attention Module),通过对通道的多尺度上下文信息进行聚合,能够同时强调全局分布较大的对象以及局部分布较小的对象。通过这种方式,网络能够更好地识别和检测尺度变化较大的对象。总而言之,该模块解决了在不同尺度上给出的特征融合时出现的问题,特征图的初始整合可能成为瓶颈,并且通过增加另一个层次的注意力(称之为迭代注意力特征融合)可以缓解这一问题。iAFF在特征融合方面具有很大的潜力,可以持续产生更好的结果。

iAFF介绍

AFF和iAFF的示意图如下:

在这里插入图片描述

AFF模块: 通过关注通道的不同尺度(即多尺度通道注意力),解决不同层次特征融合的语义和尺度不一致问题。图(a)中两个输入特征图(X 和 Y)的信息,经过多尺度通道注意力模块(MS-CAM)后,输出特征图Z。具体流程如下:

  • 输入特征 X 和 Y:分别表示不同层或不同尺度的特征图。它们的尺寸都是 C×H×W (C 是通道数,H 和 W 是特征图的高度和宽度)。
  • 加权乘法:首先对 X 和 Y
    进行通道上的加权操作,用不同的权重去强调某些通道的信息。通过加权乘法后,两个特征会分别与权重矩阵进行逐通道的乘法操作。
  • MS-CAM:经过通道加权后的 X 和 Y
    被送入多尺度通道注意力模块(MS-CAM)。这个模块负责捕捉不同尺度的全局和局部信息,确保不同分辨率下的特征都能得到充分的融合。
  • 加法操作:最后,将来自 X 和 Y 的特征经过加权求和后得到输出特征 Z。

iAFF模块 :在AFF模块基础上进一步引入另一层注意力,改善特征融合质量。 这些模块通过更有效的特征融合方式提升了网络整体性能。流程:

  • 第一次加权和融合:与 AFF 一致,首先对输入特征 X 和 Y 进行加权乘法和融合操作,得到初步的输出特征。
  • 第二次 MS-CAM:初步输出再次进入一个 MS-CAM 模块,进一步增强特征间的语义和空间一致性,捕捉更丰富的上下文信息。
  • 第二次加权和融合:再次对输出进行融合,最终得到更丰富、更精确的输出特征 Z。


http://www.ppmy.cn/devtools/115577.html

相关文章

【Elasticsearch系列十九】评分机制详解

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

如何搭建ETL?

搭建一个ETL(Extract, Transform, Load,提取、转换、加载)流程,涉及从多个数据源提取数据、对数据进行清洗和转换、再将其加载到目标数据存储或数据仓库中。构建ETL的关键步骤包括规划、选择合适的工具、设计数据流以及执行和监控…

【Android】浅析MVC与MVP

【Android】浅析MVC与MVP 文章目录 【Android】浅析MVC与MVP什么是架构?MVC架构Model-View-ControllerModelViewController解决什么问题数据的流向MVC 模式的工作流程 MVC 架构模式的优缺点 MVP架构Model-View-Presenter解决什么问题数据流向MVC 和 MVP 的核心区别&…

Hive企业级调优[6]——HQL语法优化之任务并行度

目录 HQL语法优化之任务并行度 优化说明 Map端并行度 Reduce端并行度 优化案例 HQL语法优化之任务并行度 优化说明 对于分布式计算任务来说,设置一个合理的并行度至关重要。Hive的计算任务依赖于MapReduce框架来完成,因此并行度的调整需要从Map端和…

mac新手入门(快捷键)

系统常用快捷键 基本操作 Command-Z 撤销Shift-Command-Z:重做最近的撤销操作Command-X 剪切  Command-C 拷贝(Copy) Option Shift Command V 纯文本拷贝 Command-V 粘贴  Command-A 全选(All)Command-S 保…

大数据Flink(一百二十一):Flink CDC基本介绍

文章目录 Flink CDC基本介绍 一、什么是CDC 二、CDC的实现机制 三、​​​​​​​​​​​​​​传统 CDC ETL 分析 四、​​​​​​​​​​​​​​基于 Flink CDC 的 ETL 分析 五、​​​​​​​​​​​​​​什么是 Flink CDC 六、​​​​​​​​​​​​​​…

【数据结构】顺序表和链表经典题目

系列文章目录 单链表 动态顺序表实现通讯录 顺序表 文章目录 系列文章目录前言一、顺序表经典例题1. 移除元素2. 合并两个有序数组 二、链表经典例题1. 移除链表元素2. 反转链表3. 合并两个有序链表4. 链表的中间节点5. 环形链表的约瑟夫问题 总结 前言 我们通过前面对顺序表…

react + antDesignPro 企业微信扫码登录

效果 实现步骤 1、项目中document.ejs文件引入企微js链接 注意&#xff1a;技术栈是使用的react antDesignPro&#xff0c;不同的技术栈有不同的入口文件&#xff08;如vue在html文件引入&#xff09; <script src"https://wwcdn.weixin.qq.com/node/wework/wwopen/j…